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Abstract—The Tor network enhances clients’ privacy by rout-
ing traffic through an overlay network of volunteered inter-
mediate relays. Tor employs a distributed protocol among
nine hard-coded Directory Authority (DA) servers to securely
disseminate information about these relays to produce a new
consensus document every hour. With a straightforward voting
mechanism to ensure consistency, the protocol is expected to
be secure even when a minority of those authorities get com-
promised. However, the current consensus protocol is flawed:
it allows an equivocation attack that enables only a single
compromised authority to create a valid consensus document
with malicious relays. Importantly the vulnerability is not
innocuous: We demonstrate that the compromised authority
can effectively trick a targeted client into using the equivocated
consensus document in an undetectable manner. Moreover,
even if we have archived Tor consensus documents available
since its beginning, we cannot be sure that no client was ever
tricked.

We propose a two-stage solution to deal with this exploit.
In the short term, we have developed and deployed TorEq, a
monitor to detect such exploits reactively: the Tor clients can
refer to the monitor before updating the consensus to ensure no
equivocation. To solve the problem proactively, we first define
the Tor DA consensus problem as the interactive consistency
(IC) problem from the distributed computing literature. We
then design DirCast, a novel secure Byzantine Broadcast pro-
tocol that requires minimal code change from the current Tor
DA code base. Our protocol has near-optimal efficiency that
uses optimistically five rounds and at most nine rounds to
reach an agreement in the current nine-authority system. Our
solutions are practical: our performance analysis shows that
our monitor can detect equivocations without changing the
authorities’ code in five minutes; the secure IC protocol can
generate up to 500 consensus documents per hour in a real-
world scenario. We are communicating with the Tor security
team to incorporate the solutions into the Tor project.

1. Introduction

The Tor network is the most widely used anonymous
communication solution consisting of over 8,000 volun-
teered intermediate relays and serves over two million daily
users over the past year [30]. Here, a Tor client software
on a user device first chooses a small subset of (typically
three) relays from all volunteered relays following Tor’s

path selection strategy [31]. The client then forms a Tor
circuit [27] involving cryptographic key exchange and es-
tablishing networking sessions over the chosen nodes and
routes the user’s traffic over this circuit during the session.

The efficiency and security of the Tor service critically
depend upon Tor’s path selection strategy [5], [13], [35],
[36]. There are nine Directory Authorities (DAs) in Tor
providing current relay information to the clients. To reduce
bandwidth cost so that every client does not have to ask each
authority one by one for information, the authorities execute
a distributed protocol in which they would all sign on a
specific version of the relay parameters/information, called
a consensus document, to guarantee that the information is as
accurate and current as possible, which can then be delivered
and verified by any client in one piece.

The consensus documents are vital for Tor to function.
Without a way to produce and verify relay information,
the client may be tricked into using adversarial relays that
easily compromise the anonymity of the client. However,
consensus documents differ greatly from the information
each authority offers [12], and Tor DAs have occasionally
been unable to form a consensus document. In August 2010,
the unexpected behavior of one authority triggered a failure
in the process of building a consensus document [24]. In
January 2021, a sudden distributed DoS attack on authorities
caused Tor to be unavailable for several hours due to being
unable to form a consensus document [22]. These incidents
demonstrate how Byzantine behaviors by even a single
authority can render the current Tor system unusable and
how a re-examination of the current protocol for generating
the consensus documents is necessary to ensure the security
of the system.

As our first contribution, we examine the premise of
the Tor DA protocol based on source code and documen-
tation and confirm the system model to be standard point-
to-point bounded-synchronous communication links with a
minority of Byzantine faults (Section 2). We then detail vul-
nerabilities that can compromise the anonymity of clients.
We find that a single compromised authority can create a
consensus document not known to correct DA servers by
sending different information to different correct authorities.
We call this exploit the equivocation attack. Without the
client actively checking on all nodes, the exploit remains
unnoticed. Furthermore, because of design oversights in the
current codebase, we discover practical exploits that com-
promise the clients’ anonymity as an adversary can inject



adversarial relay information into this consensus document.
To avoid overburdening authorities, clients obtain consensus
documents by asking a random authority and trust the
document if its signatures are valid. However, an adversary
can compromise the client’s anonymity by tricking them into
using relays that the adversary controls (Section 3).

As our second contribution, we have built TorEq, a
temporary remedy service to detect and address the exploit
in a reactive manner. After the authorities build a consensus
document, the service pulls consensus information from
every DA to ensure no equivocation attack occurs. We
deployed the service and found out that the service can
summarize the information in 5 minutes after the publication
of every consensus document (Section 4).

Our third contribution focuses on proactive measures.
To ensure that similar exploits do not succeed in the future,
we hope not only to fix the specific design oversights that
allow the adversary to inject bad relay information but also
to create a consensus protocol for Tor that is provably secure
in the defined system model. Due to the complex nature
of computing one consensus document, we establish that
Interactive Consistency [10] is a practical way to implement
the Tor DA consensus process. We provide an Interactive
Consistency protocol using parallel Byzantine Broadcasts.
Since there are only nine DA servers in Tor, we design
DirCast, a protocol that improves the efficiency for the low
number of servers. Improving the idea from the current state-
of-the-art protocol [1], our protocol is highly efficient in the
common scenario with no equivocation and terminates in
5 rounds. Our protocol consists of a Bootstrap Phase and
an Agreement Phase. In the Bootstrap Phase, each authority
broadcasts its information to everyone, and in the Agreement
Phase, authorities synchronize with each other to ensure no
equivocations occur (Section 5).

We built a test version of the protocol with the current
approach in mind, and there is only a small code change
(about 8%) from the original code base. We evaluate our
protocol in geographically distributed environments like Tor
and show they are highly applicable: our protocol can gen-
erate up to 500 consensus documents per hour, and Tor
only needs one consensus document per hour. Our protocol
is also transparent to clients, so only an update for the
Directory Authorities is necessary to switch to the new
protocol (Section 6).

Responsible Disclosure. We contacted the Tor security team
on this vulnerability on April 27, 2022. The security team
acknowledged the issue on May 6, 2022. We had further
communications during the summer of 2022, including an
in-person meeting. We simultaneously developed an equiv-
ocation detector as an emergency measure (TorEq). It was
merged into Tor’s codebase on August 11, 2023 [38].

As the Tor team is working towards migrating Tor from
C to Rust in Project Arti [34] and still developing support
for onion services as of 2023, other features such as Direc-
tory Authorities are currently not under active development,
but we are looking forward to working with the team to
implement our protocol offering proactive security.

2. Preliminaries

We begin by introducing the Tor Directory service, its
goals, and the assumption. We then present the current
protocol that we obtained by analyzing the source code.

2.1. Background of the Directory Protocol

Since Tor’s service depends on relays run by volunteers,
one essential aspect of utilizing such a service is that the
client has a list of relays so that the client can choose
three to establish the circuit. Serving a correct and current
list of relays to every client is a security matter directly
related to the guarantee of anonymity: the client’s anonymity
depends on the fact that the relays do not track the client
collaboratively. An adversary that controls the first relay can
see who is accessing the network and start fingerprinting; an
adversary that controls the third relay can see what is being
accessed. Therefore, we must ensure the client gets correct
and current information on relays.

Naïve solutions are not ideal in this scenario: hard
coding every relay into the software is impractical, as relays
run by volunteers may not remain usable throughout the
update cycle of the Tor software. Another naïve solution
is to have the Tor client fetch a list of the information of
relays from an authoritative source, like Tor’s website, before
it tries to establish any circuit. This solution establishes a
single point of failure: if the website is down, then Tor may
not be usable. Any compromise to the authoritative source
also directly impacts Tor’s anonymity, while any hacker that
controls the source can compromise Tor.

To address the concern, Tor set up a distributed system
consisting of 9 special relays as Directory Authorities (DA)
to help collect and disseminate information on relays. While
the client technically can ask each of the authorities for
a list of relays and aggregate them locally, at the current
size of the list (approximately 2 MB each, according to
estimation on the statistic data [30]), each update would
require approximately 20 MB of data. With the number of
clients utilizing the system (around 2 million at any given
time in 2021 [30]), it is more bandwidth-efficient if the client
only needs to fetch one consensus document on aggregated
relay information instead of 9 separate documents. This
reason drives the Tor team to develop a Directory Protocol
that allows the authorities to produce and agree on one
consensus document every hour for the clients to use.

The protocol used by Tor DA has been reworked sev-
eral times. The current Version 3 Directory Protocol has a
detailed specification that outlines the expected behavior of
an authority [29]. Tor is also an open-source project and
publishes its code including the Directory Authority portion
for examination [32].

As of 2021, the 9 Directory Authorities publish one
consensus document every whole hour. Every consensus
document is valid for 3 hours, which is designed to provide
redundancy. Relays use HTTP POST to send their descriptor
to the authorities. Both relays and clients fetch the current
consensus document via HTTP GET.
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Figure 1: Current Tor’s voting scheme. Thick lines represent messages that will be sent. Dashed lines represent potential communications
if the first authority cannot hear from some authority. Dotted lines represent communications with the client. Outline of the protocol:
(1) Every relay sends its information to the authorities when it boots up. (2) In the Perform Vote step, every authority shares what it knows
to every other authority in the form of a vote. (3) In the Fetch Votes step, if one authority has not heard from someone, it asks everyone
else if they have heard from it. (4) In the Compute Consensus step, every authority builds consensus locally, signs it and broadcasts the
signature. (5) In the Fetch Signatures step, if one authority has not received the signature from someone, it asks everyone else for it.
(6) When it is time to publish a consensus document, Authorities collect the signatures and then generate the consensus.

2.2. System Model and Goals

Within the specification of Tor [29], authorities are
expected to publish one consensus document every hour.
Furthermore, the current Tor protocol divides the ten-
minute consensus document generation process into four
150-second rounds, in which each authority is expected to
act according to the specification. We conclude that the spec-
ification resembles a bounded synchrony assumption [3].
Furthermore, as the specification states that every authority
ensures accurate clocks, we assume the presence of a global
clock, whose skew is largely irrelevant because the protocol
is run sparsely.

According to the specification, the current Tor protocol
tries to fix an issue from the previous versions: to ‘prevent
authorities from lying’ [29]. Therefore, the threat model
allows incorrect authorities controlled by the adversary to
behave arbitrarily.

Summarizing from above, we consider the system model
of Tor to be a standard bounded synchronous and authenti-
cated setting. In this setting, the adversary may take control
of some authorities less than half. This setting is common
in works and applications dealing with consensus [1], [3],
[6], [23].

The protocol should satisfy safety and liveness require-
ments when facing an adversary controlling a minor number
of authorities. From a broad viewpoint, safety is the clients’
anonymity not being compromised due to the consensus
document, and liveness is the clients’ timely receiving of the
consensus document. While an accurate formal description
that captures these ideas is difficult to obtain, we claim that
the following properties should hold even if a minor number
of authorities behave arbitrarily:
(1) Agreement. All correct authorities should output the

same consensus document determined by some aggre-

gation rule.
(2) Integrity. The adversary should not be able to forge

a valid consensus document different from what the
correct authorities output.

(3) Liveness/Termination. The protocol should produce
one consensus document each hour.

2.3. Current Protocol

Since the current description of the Directory Protocol
does not specify distributed system behavior [29], we ana-
lyze the source code [32] of Tor and summarize the behavior
of authorities below.

There are 4 rounds in the current consensus protocol:
Perform Vote, Fetch Votes, Compute Consensus, and Fetch
Signatures. Each round lasts 150 seconds. Therefore, au-
thorities start running the protocol 10 minutes before the
publication of a consensus document. Figure 1 displays a
visual representation of the protocol.

Below we provide a detailed description of the pro-
tocol. For clarity, we consider a system with authorities
{𝑃1, 𝑃2, … , 𝑃𝑛} and relays {𝑟1, 𝑟2, … , 𝑟𝑚}.
(1) Perform vote. At the start of each consensus protocol,

each authority 𝑃𝑖 collects some meta-data (voting inter-
val, length of each step, etc.) and information on every
relay 𝑟𝑥 it knows about. It then packs the information
of the relays into a vote 𝑉𝑖 and broadcasts the vote
VOTE(𝑉𝑖) to every other authority.

(2) Fetch missing votes. If an authority 𝑃𝑖 has not received
a vote from authority 𝑃𝑘 in the previous round, it
broadcasts a request FETCH_VOTE(𝑖, 𝑘) to every other
authority. Upon receiving any such request, the authority
sends back the corresponding vote to the authority if it
has received one from 𝑘 in the previous round. After re-
ceiving the vote, the authority checks the vote and keeps
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the latest vote in record according to the timestamp on
the vote.

(3) Compute consensus. Each authority builds a consen-
sus document locally based on the votes it received.
Formally, given a list of votes 𝐿𝑖 = (𝑉1, 𝑉2, … , 𝑉𝑛),
the authority 𝑃𝑖 summarizes information on every relay
𝑟𝑥 to build a consensus document of available relays
𝐶𝑖 = (𝑟1, 𝑟2, … , 𝑟𝑚) based on the following procedure:
(a) The authority checks if at least ⌊𝑛

2 ⌋ + 1 votes have
been received. It aborts if there are insufficient
votes.

(b) For each relay 𝑟𝑥 ∈ ⋃𝑉∈𝐿𝑖
𝑉:

(i) The authority first determines if it should be
in the list. A relay 𝑟𝑥 is in the list the authority
publishes if and only if it is included in at least
⌊𝑛

2 ⌋ + 1 votes.
(ii) If there is a naming conflict, the authority

takes notice and picks the name from the
authority with the largest ID.

(iii) For each property of 𝑟𝑥, determine the value
from the most popular opinion, i.e., the one
that is favored by most votes.
(A) This includes all the flags (Exit, Guard,

Running, BadExit, MiddleOnly, Valid). In
case of a tie, the flag is not set.

(B) This also includes the version and proto-
col of the relay. In case of a tie, the largest
version and/or protocol is selected.

(C) The authority determines bandwidth by
the median of all votes that contain them.
It only acknowledges measured band-
width if there are no less than 3 authori-
ties that measured it.

(D) In case of a tie, it uses the lexicograph-
ically larger one as the exit policy sum-
mary.

It then signs the consensus document and broadcasts the
signature 𝜎(𝐶𝑖).

(4) Fetch missing signatures. If an authority 𝑃𝑖 has not
received a signature from authority 𝑃𝑘 in the previous
round, it broadcasts a request FETCH_SIG(𝑖, 𝑘) to ev-
ery other authority. Upon receiving any such request, the
authority sends back the corresponding signature to the
authority if it has received one from 𝑃𝑘 in the previous
round. After receiving the signature the authority 𝑃𝑖
checks the signature to see if it matches 𝐶𝑖 and adds
it to the consensus document.
Once it is time to publish a consensus document, the

authority checks if ⌊𝑛
2 ⌋ + 1 signatures have been collected.

If so, the authority makes the consensus available to the
public.

Tor Proposal 207 [17] outlines the concept of direc-
tory guards as a means for the clients to fetch consensus
documents but is not specific on the implementation. We
examine the official source code [32] and conclude that
in the current implementation, every Tor relay fetches the
consensus document from a random authority via HTTP
every hour. Every Tor client instead fetches the consensus

𝐸

𝐻1 𝐻2

0 1

1

0

𝐸

𝐻1 𝐻2

0 1

𝐸

𝐻1 𝐻2

𝜎 0

𝜎
1

𝜎1

𝜎0

Figure 2: Example of an equivocation attack. The adversary party
𝐸 can cheat by sending different values to 𝐻1 on the left and
𝐻2 on the right and trick them into signing on different values.
1) 𝐸 receives 0 from 𝐻1 and 1 from 𝐻2 as they broadcast their
respective input. 2) 𝐸 equivocates by sending 0 to 𝐻1 and 1 to 𝐻2.
3) 𝐻1 sees that both 𝐸 and 𝐻1 have input 0 and thus signs on 0
as the protocol output. 𝐻2 sees that both 𝐸 and 𝐻2 have input 1
and thus signs on 1 as the protocol output. 𝐻1 will think that 𝐻2
has misbehaved and disregard the ‘incorrect’ signatures from 𝐻2.
𝐻2 will also think that 𝐻1 has misbehaved.

document from a random source based on a hard-coded list
of relays and authorities via HTTP at boot time. It then keeps
using the document until it is no longer fresh (after one
hour), after which the client will repeat the fetching process
from one of its entry guards [33] for a new document.

3. Vulnerabilities of the System

Intuitively the vulnerability of the current protocol is that
it does not address equivocations of adversarial authorities.
We analyze how the adversary can utilize the vulnerability
to evade the current consensus monitoring mechanism and
poison any client based on the official implementation. We
then study three possible attack vectors that allow us to
compromise the liveness or integrity of the protocol with
a minority (even one) adversarial authority.

3.1. Equivocation in the Current Protocol

An equivocation attack happens when authorities send
different messages to different correct authorities. Since the
current protocol lacks any equivocation check, it is easy
for adversarial authorities to violate the safety property and
create two valid consensus documents.

Consider a simple scenario: the 9 Tor Directory Au-
thorities 𝑃 = {𝑃1, 𝑃2, … , 𝑃9} need to agree on whether a
particular relay should be listed in the consensus document.
Each of the 9 authorities 𝑃𝑖 has a value 𝑥𝑖 of either 0 or
1, where 0 means that the authority believes that the relay
should not be listed, and 1 means that the authority considers
that the relay should be listed in the consensus document.

Recall that the authorities need to sign the same consen-
sus document, so they need to agree on one value of 𝑥. In the
current protocol, each authority collects every 𝑥𝑖 from every
authority 𝑃𝑖 via a vote in the Perform Vote step and signs the
value that appears more often. This allows an equivocation
exploit. Assume a minority adversary party of 3 authorities
𝐸 = {𝑃1, 𝑃2, 𝑃3} knows the values of honest authorities
𝑥4 = 𝑥5 = 𝑥6 = 0 and 𝑥7 = 𝑥8 = 𝑥9 = 1. They can tell
correct authorities 𝐻1 = {𝑃4, 𝑃5, 𝑃6} that 𝑥1 = 𝑥2 = 𝑥3 = 0
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by voting, so 𝐻1 sees 6 values of 0 and signs 𝑥 = 0 in
the Compute Consensus step. They can then tell correct
authorities 𝐻2 = {𝑃7, 𝑃8, 𝑃9} that 𝑥1 = 𝑥2 = 𝑥3 = 1 by
voting, so 𝐻2 sees 6 values of 1 and signs 𝑥 = 1. The
process is demonstrated in Figure 2.

Furthermore, the adversary can now create two versions
of the consensus at the same time, as they now have 3
signatures on both 𝑥 = 0 and 𝑥 = 1. They can sign both
𝑥 = 0 and 𝑥 = 1 to get another 3 signatures for both
values, so they now have 6 signatures - a majority - on both
𝑥 = 0 and 𝑥 = 1, and create two contradictory consensus
documents based on the signatures. It is now possible for
the adversary to broadcast only the signatures for 𝑥 = 0
in the Compute Consensus step, so the public only sees
the consensus document with 𝑥 = 0 and 6 signatures. The
consensus document with 𝑥 = 1 has only 3 signatures (less
than half of the authorities), so it will not be published by the
authorities that signed on 𝑥 = 1. However, the adversary has
the consensus document with 𝑥 = 1 and 6 signatures, so it
can feed a client it wants to poison with this document. The
client with this document will see 𝑥 = 1 and acts differently
than other clients that see 𝑥 = 0.

This exploit is possible for even one adversarial authority
as long as the initial values of correct authorities are evenly
split between 𝑥 = 0 and 𝑥 = 1.

3.2. Utilizing the Exploit

Because the current Tor consensus health monitor [28]
collects only the consensus document and the votes from
the respective voters, the monitor cannot detect the exploit
as long as adversarial authorities also provide one version
of the vote to the monitor. Furthermore, even if we have all
the archived Tor consensus documents available, we do not
know if such an attack happened in the past, because the
attack is not observable on the correct consensus document
except for missing signatures.

For a liveness attack, we can apply the equivocation
attack directly since our goal is to disrupt the generation
of any consensus document. For an integrity attack, we aim
to feed the client with an incorrect consensus document so
that the client uses the document and loses anonymity.

The client, by default, picks a source from a hard-coded
list uniformly at random to ask for the current consensus
document at boot time. If the source is adversarial, that
source can provide the client with an incorrect consensus
document. Meanwhile, if the source is not adversarial, since
Tor uses HTTP for all transmissions, an adversary can
also spoof connections to authorities and provide the client
with the incorrect consensus document. As the client does
not store archived consensus, the exploit will also not be
traceable by the client once it fetches a new consensus and
dumps the current one.

For this exploit to be practical, the adversary needs some
capability to manipulate the input of the correct authorities
to achieve meaningful results. We detail three possible attack
vectors below.

1 /* Pick a bandwidth */
2 if (num_mbws > 2) {
3 rs_out.has_bandwidth = 1;
4 rs_out.bw_is_unmeasured = 0;
5 rs_out.bandwidth_kb =
6 median_uint32(measured_bws_kb, num_mbws);
7 } else if (num_bandwidths > 0) {
8 rs_out.has_bandwidth = 1;
9 rs_out.bw_is_unmeasured = 1;

10 rs_out.bandwidth_kb =
11 median_uint32(bandwidths_kb, num_bandwidths);
12 if (n_authorities_measuring_bandwidth > 2) {
13 /* Cap non-measured bandwidths. */
14 if (rs_out.bandwidth_kb >
15 max_unmeasured_bw_kb) {
16 rs_out.bandwidth_kb = max_unmeasured_bw_kb;
17 }
18 }
19 }

Figure 3: Code of bandwidth computation. Line 2 shows that the
bandwidth is considered measured if 3 authorities have measured
it.

3.3. Attack Vectors

3.3.1. Liveness Attack. The current computation process
of the consensus document is sensitive to input from one
party in several aspects: one party with the largest ID can
determine the name of any relay, and because the bandwidth
of any relay is determined by the median value of all votes,
one adversarial party can also equivocate on the bandwidth
to cause different correct parties to compute different con-
sensus documents.

This sensitivity is sufficient to halt the execution of Tor
with the application of an equivocation attack. One adver-
sarial authority can manipulate the scheme such that every
correct authority compute a different consensus document
from each other. In this scenario, no consensus can be made
since every authority has a different output.

3.3.2. Sybil Relay Injection. A Sybil attack [37] is a
common exploit to deanonymize Tor’s clients. Since the
client’s anonymity is broken if all three relays the client uses
work to track it collaboratively, in this exploit, an adversarial
party tries to register as many relays as possible to gain a
disproportionately large influence and trick clients into using
them.

Because Sybil attacks against Tor are tracked by manual
data analysis instead of automated process [20], an equiv-
ocation attack helps greatly by preventing the consensus
document with Sybil relays from being seen by the public.

To use the equivocation attack, one adversarial authority
can keep the Sybil relays unknown to some correct author-
ities but known to others to cause a consensus split. This
is done by having the Sybil relays broadcast to only part of
the correct authorities.

3.3.3. Bandwidth Manipulation. In the current protocol,
the consensus acknowledges measured bandwidth as long
as 3 authorities measure it. (See Figure 3.)

Meanwhile, if an adversarial relay is newly introduced
to the system, it will initially have no measured bandwidth
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since nobody has measured it. Therefore, 3 adversarial au-
thorities can work together to publish a bandwidth before
real measurements are taken, and the incorrect bandwidth
will be included in the final consensus document.

In the current Tor system, the bandwidth of a relay
is proportional to the probability of the client using it.
Therefore, if one adversarial relay has incorrect but high
bandwidth, the client will use it with high probability.

3.4. Attack Demonstration

For demonstration purposes, we pick a situation where a
party of 3 adversarial authorities adds relays with arbitrary
bandwidth and creates two consensus documents.

3.4.1. Steps of the Exploit. We denote the party of 3
adversarial authorities 𝐸. We also arbitrarily decide a party
of 𝑟 = ⌊𝑛

2 ⌋ − 2 correct authorities to be manipulated to sign
our incorrect consensus document beforehand so that we
reach a quorum of 𝑓 +𝑟 = ⌊𝑛

2 ⌋+1. Denote this party of correct
authorities 𝐻′. Denote the rest of the correct authorities 𝐻.
(1) Prepare the list of relays. Denote 𝐶 to be what we

would normally vote during the Perform Vote step and
𝐶′ to be the vote with the modified measured bandwidth.

(2) Actions during the Perform Vote step. Authorities in
𝐸 would vote 𝐶′ to the party 𝐻′ and 𝐶 to the party 𝐻.

(3) Actions during the Compute Consensus step. Author-
ities in 𝐻′ would sign on 𝐶′ and authorities in 𝐻 would
sign on 𝐶. As long as authorities in 𝐸 publish their
signatures on 𝐶, it would be the consensus document
for the round.

(4) Create an unpublished consensus. Authorities in 𝐸
can sign on 𝐶′ privately. Together with the signatures
from 𝐻′ this would result in an unpublished consensus
on 𝐶′.

3.4.2. Experimentation. We used Chutney [26] to simulate
a Tor network with 9 authorities, similar to the current
layout of Tor. With a modified codebase for the adversarial
authorities, we show that 2 correct authorities in party 𝐻′

signed on the incorrect consensus document but could not
publish it due to a lack of signature, while other authorities
agreed on the correct version of the consensus document.
(See Figure 4.)

4. Reactive Measure

In this section, we offer a reactive measure that detects
the equivocation scenario. The proposed measure is easy to
integrate into the current Tor network and offers fast and
reliable detection, though it does not prevent the exploit
altogether.

4.1. Introduction of TorEq

While the Tor development team is working on devel-
oping the next iteration of the software in Rust, the current

r test010r kNeiqbQSrPh/JPuJiTrcz1bNDTY Nf2VyvkI...
2022-04-05 17:27:05 127.0.0.1 5010 0
......
w Bandwidth=14597871
......
-----BEGIN SIGNATURE-----
KtR7wLvxNtat1Kly71bjJVyWp9gwuPbggnQYBdZI8dWLm7M...
......
-----END SIGNATURE-----

Apr 05 13:27:20.657 [warn] A consensus needs 5 good
signatures from recognized authorities for us to
accept it. This ns one has 2 (test003a test004a).
7 (test005a test000a test006a test002a test007a
test008a test001a) of the authorities we know
didn't sign it.

Figure 4: Demonstration of the bandwidth exploit. This is an
example of a correct authority that signs on the incorrect consensus
but cannot publish it. The top box displays the consensus that the
authority signed. Note the unusually high bandwidth. The bottom
box displays the log of the authority.

Figure 5: A typical display of the monitor plugin. The image above
is a display of a real-world scenario where no equivocation hap-
pens; the image below is a test-case scenario where an equivocation
happens.

system still needs to address the issue. Therefore, we have
developed TorEq, a plugin to be put into the Tor Consensus
Health Monitor using the current Python codebase of the
monitor. The monitor generates one web page per hour to
track the consensus document and the consensus protocol.
The plugin we develop displays the vote each authority
receives from other authorities and automatically checks for
discrepancies. Figure 5 shows a typical display of the plugin.

The plugin automatically collects every vote that every
authority receives concurrently every hour, which has a
communication overhead of 𝑛2𝑑, where 𝑛 is the number of
authorities (9 as of now) and 𝑑 is the document length. It
then compares them to see if any authority has equivocated
and provides a warning if it finds such behavior.

While this is a short-term fix for the system, it does not
entirely prevent the exploit, and equivocation is still possible.
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Introducing a single monitor places trust in the monitor,
which becomes a single point of failure and may also suffer
DDOS attacks that render it unavailable. Any adversary that
can corrupt the authorities and the monitor can bypass the
detection altogether. Meanwhile, the reactive measure means
that we cannot provide a remedy automatically if we detect
an equivocation, and the Tor service may not be safe until
we resolve the situation manually.

In case of a detected equivocation, we recommend the
clients continue using the latest consensus document known
to be safe (generated without equivocating). While the client
may cache such consensus document over continued usage,
we recognize there might be no feasible way to obtain the
latest safe consensus document during bootstrapping for a
new client. Therefore, we recommend that the authorities
keep track of the equivocation situation and always keep
the latest safe consensus document available.

4.2. Benchmark

For our plugin to be efficient in a practical setting, we
need to demonstrate that it can generate a result in a short
time in comparison to the 3-hour lifetime of any consensus
document. It should also be usable under the setting of a
typical server machine that the Tor consensus monitor uses.
Benchmark Setup. We tested our consensus monitor with
our plugin on a typical server setting: a t3a.medium AWS
instance with 4 GB RAM, 8 GB hard disk, 2 vCPUs running
at up to 3.3 GHz, and a bandwidth of up to 5 Gbps. We
developed our plugin based on the open-sourced monitor
codebase in Python [28], and we use the current monitor as a
baseline to compare the performance. We run both monitors’
web page generation process 5 times to output a web page
displaying the consensus document and consensus protocol
status, fetching data from the real-life Directory Authorities.
We compared our monitor’s performance with the current
insecure version that does not detect equivocation.
Benchmark Result. We discover that our monitor consumes
140.7 MB bandwidth, compared to 18.0 MB of the current
monitor. This is to be expected, as our monitor has a higher
communication complexity than the original monitor of 𝑛2𝑑
(𝑛 is the number of authorities and 𝑑 is the length of the
document). Our monitor generates a web page in 229.164
seconds on average, while the current monitor generates one
in 134.988 seconds. As the process needs to be done once
an hour, we conclude that our solution runs in a comparable
time to the current insecure monitor and is practical.

5. Improving the Protocol
Next, we examine what a consensus protocol like the one

Tor is using wants to achieve and design a secure protocol
that satisfies Tor’s needs.

5.1. Definition

The current aggregation rule needs to compute different
subjects, including the presence of a relay, its flags, its

bandwidth, etc. (see Section 2.3) To implement the rule, one
reasonable way is to aim for Interactive Consistency, which
allows an authority to compute the consensus document
locally in the same way as the current design:

Definition 5.1 (Interactive Consistency (IC) [8]). With a
system of 𝑛 servers {𝑃1, 𝑃2, … , 𝑃𝑛} and each server 𝑃𝑖
starting with a value 𝑥𝑖, the following properties hold after
the protocol execution:
(1) Termination. Every correct server 𝑃𝑖 eventually outputs

a vector 𝑋𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛} of size 𝑛.
(2) Agreement. If server 𝑃𝑖 and 𝑃𝑗 are correct, then 𝑋𝑖 = 𝑋𝑗.
(3) Validity. If a correct server 𝑃𝑖 starts with the value 𝑥𝑖,

then 𝑥𝑖,𝑖 = 𝑥𝑖.

Tor’s current consensus protocol resembles an attempt
to achieve IC. However, in the current protocol, adversarial
authorities can compromise the protocol by equivocating
during the broadcast. Hence, the essential vulnerability of
the system is the insecure broadcast channel, which allows
the adversary to equivocate and create an incorrect consen-
sus document that can compromise the anonymity of the
client. Therefore, it is important to improve the protocol to
achieve a secure broadcast, which is defined as the Byzantine
Broadcast problem.

Definition 5.2 (Byzantine Broadcast (BB) [4]). With a
system of 𝑛 servers 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}, and the sender
𝑃𝑠 ∈ 𝑃 starting with a value 𝑥, the following properties
hold:
(1) Termination. Each correct server 𝑃𝑖 eventually outputs

a value 𝑥𝑖.
(2) Agreement. If server 𝑃𝑖 and 𝑃𝑗 are correct, then 𝑥𝑖 = 𝑥𝑗.
(3) Validity. If the sender 𝑃𝑠 is correct, then every correct

server outputs 𝑥.

We can design a protocol that achieves IC with 𝑓 ad-
versarial servers out of an 𝑛-server system as long as
𝑛 ≥ 𝑓 + 1, by utilizing 𝑛 authenticated broadcast chan-
nels [21]. However, considering that the authorities output a
consensus document signed by the majority eventually, and
an adversarial majority can fabricate any document with the
signatures of a majority, we limit our discussion to situations
where 𝑛 ≥ 2𝑓 + 1. A secure BB protocol solves the current
vulnerabilities Tor has. Therefore, we suggest a new version
of the BB protocol for the current consensus protocol to use.

5.2. Considerations on the Tor System

While there are a few secure BB protocols, such as
the state-of-the-art protocol [1], the specific scenario of Tor
motivates us to design a new protocol that achieves the best
performance under the situation.

1) A very low number of nodes. As of now, Tor has 9
Directory Authorities. The number is unlikely to increase
significantly even in the coming years, given that the most
recent admission is in 2017 [31]. Most BB protocols focus
on the common scenario where hundreds of nodes need to
talk to each other and emphasize performance in such a
scenario. For example, we notice that the state-of-the-art

7



protocol requires on average 10 rounds to achieve consensus
regardless of the number of nodes - that is more rounds than
the number of nodes in the Tor system.

2) An emphasis on having fewer rounds. The current
system of Tor assumes significant network delay, as the
current round time is set to 2.5 minutes. The new protocol
needs to achieve a low number of rounds, especially in the
most common scenario where all nodes are correct, without
compromising its ability to achieve consensus when the
adversary controls some of the nodes.

3) A lack of cryptographic infrastructure. Many BB pro-
tocols, such as the state-of-the-art protocol [1], assume cryp-
tographic infrastructure such as a common-coin scheme. We
observe that Tor does not have such a built-in cryptographic
infrastructure, and implementing one with some common
method [6] takes at least 5 rounds of communication, which
makes it a liability on performance.

5.3. Key Ideas

We observe that designing a good protocol to solve the
problem is not always easy: a naïve solution would be to
have every authority forward every vote it receives to every
other authority. However, the solution does not prevent the
adversarial authorities from equivocating in the forwarding
and causing a consensus split.

Fortunately, we do not have to design a BB protocol
from scratch. 𝑂(1) round complexity can be achieved with
the state-of-the-art protocol designed by Abraham et al. [1]
The state-of-the-art protocol utilizes the idea of a core
iteration to achieve 𝑂(1) round complexity. We summarize
the execution of the core iteration with 𝑛 servers and 𝑓
Byzantine faults such that 𝑛 ≥ 2𝑓 + 1 below:
(1) Propose Round. The sender signs and broadcasts its

value.
(2) Vote Round. Every server signs and broadcasts the

value it has received from the sender to everyone else
as a vote.
At the end of the round, each server checks the vote it
receives. It commits to a value 𝑥 if it receives at least
𝑓 + 1 votes on 𝑥 and receives no other properly signed
values, i.e. detects no equivocation. It then records all
signatures on the vote on 𝑥 as a certificate 𝐶.

(3) Notify Round. Every server, that commits to a value,
signs and broadcasts a notification message with 𝑥 and
𝐶.

(4) Termination. Once a server receives 𝑓 + 1 notification
messages on the same value 𝑥. It broadcasts the
signatures of 𝑓 + 1 notify messages and terminates on
𝑥.

The core iteration algorithm above has many ideal prop-
erties for building a BB protocol: (1) All correct servers
terminate on the correct value if the sender is correct in
an iteration. (2) If one correct server terminates, all correct
servers terminate in the next round. (3) No correct servers
terminate on different values. As we assume that there are
few Byzantine actors, termination in 4 rounds is ideal. The

issue with the core iteration is that the correct servers might
not terminate after the iteration finishes. However, we can
integrate a less efficient phase that only uses the committed
value and its certificate to ensure termination.

5.4. DirCast: Our Core Protocol

We designed DirCast, an authenticated synchronous BB
protocol specifically tuned for the Directory Protocol in Tor,
assuming at most 𝑓 adversarial servers out of 𝑛 ≥ 2𝑓 + 1
servers. The protocol employs ideas from [1], [9] that allow
us to achieve high efficiency when the sender is correct.

DirCast consists of two phases: the Bootstrap Phase
and the Agreement Phase. During the Bootstrap Phase,
the sender proposes its value to every server. They also
exchange the messages they have received among them.
Upon finishing the Bootstrap Phase, at most one unique
value is committed with a valid certificate, and each server
can use the certificate to prove the validity of the committed
value. During the Agreement Phase, each server synchro-
nizes the intention among them to make sure everyone stays
consistent.

We describe our protocol below. Figure 6 gives a visual
representation of DirCast.

Description of the Protocol. Denote the set of servers
participating in the protocol 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}. Denote
the sender is 𝑃𝑠 ∈ 𝑃. Every server 𝑃𝑖 ∈ 𝑃 prepares an
empty vector 𝐿𝑖 at the start of the protocol to record the
vote it has received.

Bootstrap Phase. In the Bootstrap Phase, the sender broad-
casts the message, and every other server relays the message
to ensure delivery.
(1) Propose Round. The sender 𝑃𝑠 signs the value 𝑥 to get

the signature 𝜎𝑠(𝑥) and broadcasts PROPOSE(𝑥, 𝜎𝑠(𝑥))
to every server, including itself.

(2) Vote Round. At the start of the Vote Round, if a server
𝑃𝑖 ∈ 𝑃 has received message PROPOSE(𝑥, 𝜎𝑠(𝑥))
with the correct signature in the Propose Round,
it signs the value to get the signature 𝜎𝑖(𝑥) and
broadcasts message VOTE(𝑥, 𝜎𝑠(𝑥), 𝜎𝑖(𝑥)) to every
server. In case 𝑃𝑖 receives multiple PROPOSE messages
of different values, it sends the first two values as
two VOTE messages separately. If a server 𝑃𝑖 ∈ 𝑃
receives from another server 𝑃𝑗 ∈ 𝑃 its vote message
VOTE(𝑥, 𝜎𝑠(𝑥), 𝜎𝑗(𝑥)) for the first time, server 𝑃𝑖 adds
(𝑥, 𝜎𝑠(𝑥), 𝜎𝑗(𝑥)) to its vote vector 𝐿𝑖.

At the end of the Vote Round, every server 𝑃𝑖 ∈ 𝑃 sets
its commit state 𝑥𝑖 ← (𝑥, 𝜎𝑠(𝑥)) if and only if:

1) 𝐿𝑖 consists of only 𝑥 and its signatures.
2) |𝐿𝑖| ≥ 𝑓 + 1.

Otherwise, server 𝑃𝑖 sets 𝑥𝑖 ← (⟂, ⟂). In other words, the
server 𝑃𝑖 commits if and only if it has received at least 𝑓 +1
votes and detects no equivocation. If a server commits, it
also stores the signatures on the 𝑓 + 1 votes as a certificate
𝐶(𝑥).
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Bootstrap Phase Agreement Phase
Propose Round Vote Round Synchronize Round 1 ... Synchronize Round 𝑓 + 1

......

𝑠

PROPOSE
(𝑥, 𝜎𝑠(𝑥))

VOTE
(𝑥𝑖, 𝜎𝑠(𝑥𝑖), 𝜎𝑖(𝑥𝑖))

SYNC
(𝑥, 𝐶(𝑥), 𝑆(𝑥))

NOTIFY
(𝑥, 𝜎N

𝑖 (𝑥), 𝐶(𝑥))

SYNC
(𝑥, 𝐶(𝑥), 𝑆(𝑥))

NOTIFY
(𝑥, 𝜎N

𝑖 (𝑥), 𝐶(𝑥))
Figure 6: Visualization of the core protocol. Thick lines represent messages that will be sent. Dashed lines represent potential
communications. Outline of the protocol: (1) In the Propose Round, the sender sends its value to everyone. (2) In the Vote Round,
everyone sends the value it has received to everyone. (3) Throughout the Synchronize Rounds, SYNC messages and NOTIFY messages
are propagated to ensure all servers agree on the same value. If the sender is correct, all correct servers terminate after 2 rounds, else it
can take up to 𝑓 + 1 rounds for a server to terminate.

Agreement Phase. In the Agreement Phase, each server
𝑃𝑖 ∈ 𝑃 records all certificates (𝑥, 𝐶(𝑥)) and all signatures
on the certificates 𝑆(𝑥) = {𝜎(𝐶(𝑥))} it has seen. At the start
of the phase, 𝑃𝑖 only sees a certificate if it has committed
to a non-empty value, and there are no signatures on any
certificates. Then, we run the Synchronize Round 𝑓 +1 times:
(1) Synchronize Round. At the start of the 𝑡 ∈ [1, 𝑓 +

1]-th Synchronize Round, each server 𝑃𝑖 ∈ 𝑃 that has
sent less than two different SYNC messages checks for
values and certificates it received that have exactly 𝑡 − 1
signatures in 𝑆(𝑥) and have not been signed by it. If
there are such certificates, it signs them so that there
are 𝑡 signatures and broadcasts SYNC(𝑥, 𝐶(𝑥), 𝑆(𝑥)) to
every other server. If a server 𝑃𝑖 ∈ 𝑃 receives from a
server 𝑃𝑗 ∈ 𝑃 a message SYNC(𝑥, 𝐶(𝑥), 𝑆(𝑥)) with 𝑥 not
known to 𝑃𝑖, server 𝑃𝑖 checks that |𝑆(𝑥)| = 𝑡. If that is
the case, server 𝑃𝑖 marks the value and the certificate
as received.

(2) Early termination. At the start of the Agreement Phase,
every server 𝑃𝑖 ∈ 𝑃 that commits to a non-empty
value 𝑥 signs the NOTIFY message and broadcasts
NOTIFY(𝑥, {𝜎N

𝑖 (𝑥)}, 𝐶(𝑥)).
Once a server has received 𝑓 + 1 NOTIFY messages on
the same value 𝑥, it broadcasts the signatures of these
NOTIFY messages and terminates on 𝑥. This ensures
that all the other servers receive these signatures and
terminate on the next turn.

At the end of 𝑓 +1 Synchronize Rounds, every server 𝑃𝑖 ∈ 𝑃
that has not terminated via early termination terminates with
𝑥 if it has seen one and only one value 𝑥. Otherwise, it
terminates with ⟂.

The pseudocode of the protocol is available below:
State variables:

𝑛 ← GetN() ▷ Number of authorities

𝑓 ← ⌊ 𝑛−1
2 ⌋ ▷ Number of adversarial authorities

𝑖𝑑 ← GetId() ▷ Index of the server
𝑠 ← GetSender() ▷ Index of the sender
Δ ← GetRoundTime() ▷ Round time
𝑙𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒 ← [] ▷ All Propose messages
𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠 ← Map() ▷ All Vote values and sigs
𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑎𝑙𝑢𝑒 ←⟂ ▷ Committed value
𝑐𝑜𝑚𝑚𝑖𝑡𝐶𝑒𝑟𝑡 ← {} ▷ Certificate of the value
𝑛𝑜𝑡𝑖𝑓 𝑦𝑉𝑎𝑙𝑢𝑒𝑠 ← Map() ▷ All Notify values
𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠 ← Map() ▷ All SYNC values
𝑠𝑦𝑛𝑐𝑀𝑠𝑔𝑆𝑒𝑛𝑡 ← 0 ▷ How many SYNC is sent
𝑓 𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← {} ▷ All values received

procedure GetRound(𝑡)
if 𝑡 ≤ Δ then return 𝑃𝑟𝑜𝑝𝑜𝑠𝑒
else if 𝑡 ≤ 2Δ then return 𝑉𝑜𝑡𝑒
else if 𝑡 ≤ (𝑓 + 3)Δ then return 𝑆𝑦𝑛𝑐(⌊ 𝑡

Δ − 1⌋)
return ⟂

procedure Propose
𝑥 ← GetInitialValue()
𝜎𝑠(𝑥) ← Sign(𝑥)
Broadcast PROPOSE(𝑥, 𝜎𝑠(𝑥))

upon receiving a valid PROPOSE(𝑥, 𝜎𝑠(𝑥)) do
if GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) = 𝑃𝑟𝑜𝑝𝑜𝑠𝑒 then

𝑙𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒 ← 𝑙𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒 ∪ {(𝑥, 𝜎𝑠(𝑥))}
procedure Vote

𝑢 ← Min(|𝑙𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒|, 2)
for the first 𝑢 elements (𝑥, 𝜎𝑠(𝑥)) ∈ 𝑙𝑖𝑣𝑒𝑃𝑟𝑜𝑝𝑜𝑠𝑒 do

𝜎𝑖𝑑(𝑥) ← Sign(𝑥)
Broadcast Vote(𝑥, 𝜎𝑠(𝑥), 𝜎𝑖𝑑(𝑥))

upon receiving a valid VOTE(𝑥, 𝜎𝑠(𝑥), 𝜎𝑖(𝑥)) do
if GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) = 𝑉𝑜𝑡𝑒 then

𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠[𝑥] ← 𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠[𝑥] ∪ {𝜎𝑖(𝑥)}
procedure Commit

if |𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠| = 1 then
𝑥 ← the only value in 𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠
if |𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠[𝑥]| ≥ 𝑓 + 1 then

𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑎𝑙𝑢𝑒 ← 𝑥
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𝑐𝑜𝑚𝑚𝑖𝑡𝐶𝑒𝑟𝑡 ← {𝑣𝑜𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝑠[𝑥]}
procedure Notify

if 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑎𝑙𝑢𝑒 ≠⟂ then
𝑥 ← 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑎𝑙𝑢𝑒, 𝐶(𝑥) ← 𝑐𝑜𝑚𝑚𝑖𝑡𝐶𝑒𝑟𝑡
𝜎N

𝑖𝑑(𝑥) ← Sign(𝑁𝑂𝑇𝐼𝐹𝑌(𝑥))
Broadcast NOTIFY(𝑥, {𝜎N

𝑖𝑑(𝑥)}, 𝐶(𝑥))
upon receiving a valid NOTIFY(𝑥, {𝜎N(𝑥)}, 𝐶(𝑥)) do

𝑛𝑜𝑡𝑖𝑓 𝑦𝑉𝑎𝑙𝑢𝑒𝑠[𝑥] ← 𝑛𝑜𝑡𝑖𝑓 𝑦𝑉𝑎𝑙𝑢𝑒𝑠[𝑥] ∪ {𝜎N(𝑥)}
if |𝑛𝑜𝑡𝑖𝑓 𝑦𝑉𝑎𝑙𝑢𝑒𝑠[𝑥]| ≥ 𝑓 + 1 then

Broadcast NOTIFY(𝑥, 𝑛𝑜𝑡𝑖𝑓 𝑦𝑉𝑎𝑙𝑢𝑒𝑠[𝑥], 𝐶(𝑥))
Output 𝑥 and terminate

procedure InitSync
if 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑎𝑙𝑢𝑒 ≠⟂ then

𝑥 ← 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝑎𝑙𝑢𝑒, 𝐶(𝑥) ← 𝑐𝑜𝑚𝑚𝑖𝑡𝐶𝑒𝑟𝑡
𝜎𝑖𝑑(𝐶(𝑥)) ← Sign(𝐶(𝑥))
𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠[𝑥, 𝐶(𝑥)] ← {}
𝑓 𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← {𝑥}

procedure Sync(r) ▷ 𝑟-th Synchronize Round
for (𝑥, 𝐶(𝑥)) ∈ 𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠 do

if 𝑠𝑦𝑛𝑐𝑀𝑠𝑔𝑆𝑒𝑛𝑡 ≤ 2 and |𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠[𝑥, 𝐶(𝑥)]| = 𝑟 − 1
then

𝜎𝑖𝑑(𝐶(𝑥)) ← Sign(𝐶(𝑥))
𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠[𝑥, 𝐶(𝑥)] ← 𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠[𝑥, 𝐶(𝑥)] ∪

{𝜎𝑖𝑑(𝐶(𝑥))}
Broadcast SYNC(𝑥, 𝐶(𝑥), 𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠[𝑥, 𝐶(𝑥)])
Remove (𝑥, 𝐶(𝑥)) from 𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠
𝑠𝑦𝑛𝑐𝑀𝑠𝑔𝑆𝑒𝑛𝑡 ← 𝑠𝑦𝑛𝑐𝑀𝑠𝑔𝑆𝑒𝑛𝑡 + 1

upon receiving a valid SYNC(𝑥, 𝐶(𝑥), 𝑆(𝑥)) do
if GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) = 𝑆𝑦𝑛𝑐(|𝑆(𝑥)|) then

𝑠𝑦𝑛𝑐𝑉𝑎𝑙𝑢𝑒𝑠[𝑥, 𝐶(𝑥)] ← 𝑆(𝑥)
𝑓 𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ← 𝑓 𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 ∪ {𝑥}

upon GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) = 𝑃𝑟𝑜𝑝𝑜𝑠𝑒 do
if 𝑖𝑑 = 𝑠 then

Propose()
upon GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) = 𝑉𝑜𝑡𝑒 do

Vote()
upon GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) = 𝑆𝑦𝑛𝑐(𝑟) do

if 𝑟 = 1 then
Commit()
Notify()
InitSync()

Sync(𝑟)
upon GetRound(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒) =⟂ do

if |𝑓 𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠| = 1 then
𝑥 ← the only value of 𝑓 𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠
Output 𝑥 and terminate

Output ⟂ and terminate

5.5. Security Proof

We prove that DirCast satisfies the properties of a BB
protocol: Termination, Validity, and Consistency.

5.5.1. Termination. We show that DirCast terminates
within a certain time frame.

Theorem 5.1. DirCast terminates in at most 𝑓 + 3 rounds.

Proof. It is trivial to observe that the protocol terminates
after 1 Propose Round, 1 Vote Round and at most 𝑓 + 1
Synchronize Rounds. Therefore, it terminates in at most 𝑓 +3
rounds.

5.5.2. Validity. We show that DirCast correctly delivers the
message when the sender is correct.

Theorem 5.2. If the sender 𝑃𝑠 is correct and sends 𝑥, every
correct server 𝑃𝑖 terminates with 𝑥 via early termination.

Proof. Since the sender is correct, every correct server
receives the same Propose message with 𝑥 at the end of
the Propose Round. Therefore, there will be at least 𝑓 + 1
votes for 𝑥 during the Vote Round and no equivocation.
By definition, every correct server broadcasts a NOTIFY
message at the start of the Agreement Phase, and they all
terminate early with 𝑥.

5.5.3. Agreement. We show that DirCast is secure against
equivocation attacks, starting by showing that the Agreement
Phase is consistent within itself with a Dolev-Strong style
reasoning:

Lemma 5.1. If a correct server 𝑃𝑖 receives a valid SYNC
message with value 𝑥, 𝑥 is broadcast to every server in a
valid SYNC message at the end of the protocol.

Proof. If 𝑃𝑖 received SYNC(𝑥) before round 𝑓 + 1, 𝑃𝑖 will
broadcast the message.

If 𝑃𝑖 received SYNC(𝑥) during round 𝑓 + 1, since there
are 𝑓 + 1 signatures on the message, one correct server 𝑃𝑗
must have received 𝑥 before round 𝑓 + 1, and thus 𝑃𝑗 have
broadcast the message.

Lemma 5.2. If a correct server 𝑃𝑖 terminates non-early on
𝑥𝑖 and a correct server 𝑃𝑗 terminates non-early on 𝑥𝑗, then
𝑥𝑖 = 𝑥𝑗.

Proof. From the previous lemma, we can conclude that all
correct servers received the same set of SYNC messages.
Therefore, 𝑃𝑖 and 𝑃𝑗 should follow the same termination
rule. Hence, 𝑥𝑖 = 𝑥𝑗.

We then show that any termination is consistent.

Lemma 5.3. If some correct server 𝑃𝑖 terminates early on
𝑥 ≠⟂, then there exists some correct server 𝑃𝑗 that has
committed on 𝑥 at the end of the Bootstrap Phase.

Proof. Since 𝑃𝑖 received 𝑓 + 1 NOTIFY messages, one
message must have come from a correct server 𝑃𝑗. That
server has committed on 𝑥 at the end of the Bootstrap
Phase.

Lemma 5.4. If some correct server 𝑃𝑖 commits on 𝑥 ≠⟂,
then no correct server has voted for some value 𝑥′ ≠ 𝑥.

Proof. Since 𝑃𝑖 commits on 𝑥, it received no votes on any
value other than 𝑥. Therefore, no correct node has broadcast
a vote on a value other than 𝑥.

Lemma 5.5. If some correct server 𝑃𝑖 commits on 𝑥 ≠⟂,
then every correct server terminates on 𝑥.

Proof. Since 𝑃𝑖 commits on 𝑥, by Lemma 5.4 no correct
server has voted for some value 𝑥′ ≠ 𝑥. Hence no correct
server has received a SYNC or NOTIFY message with some
value 𝑥′ ≠ 𝑥 as for such message to be valid, 𝐶(𝑥′) needs
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𝑓 + 1 votes. Therefore, if a correct server terminates early,
it terminates on 𝑥.

Since by definition of the protocol 𝑃𝑖 broadcasts a SYNC
message with 𝑥, every correct node receives this message.
Therefore, every correct server terminates non-early termi-
nates on 𝑥.

Theorem 5.3. If a correct server 𝑃𝑖 terminates with 𝑥𝑖 and
a correct server 𝑃𝑗 terminates with 𝑥𝑗, then 𝑥𝑖 = 𝑥𝑗.

Proof. If neither 𝑃𝑖 nor 𝑃𝑗 terminates early, then
by Lemma 5.2 we know 𝑥𝑖 = 𝑥𝑗.

If at least one of the servers, say 𝑃𝑖, terminates early
on 𝑥𝑖, then by Lemma 5.3 some server committed on 𝑥𝑖.
Therefore, by Lemma 5.5 𝑥𝑖 = 𝑥𝑗.

5.6. Adapting DirCast to the System

Since the Perform Vote and the Fetch Vote rounds in
the original protocol resemble 𝑛 BB protocols, if we run
𝑛 core protocols concurrently in place of these steps, we
can achieve a version of the protocol with safety guaran-
tees without modifying how each authority aggregates the
consensus document.
Equivocation Detection. Our design allows authorities to
output if they detect an equivocation happening within the
system. They can output the two conflicting votes in the
same hour as evidence that allows investigation into the
cause.
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Figure 7: Number of relays and updates on June 1, 2022. The lines
represent the number of relays on the logarithmic scale and the bars
represent the percentage of relays updated since the last consensus.

Message Compression. To make up for the increased traffic
due to the protocol, we propose one way for authorities
to compress their message when communicating with each
other. From the consensus document data we collected,
we discovered that there is little difference between the
authorities’ vote and the consensus from the last hour - less
than 15 percent of the relays have different information.
Figure 7 shows the number of relays on a typical day.
Therefore, during communication between authorities, it is
more efficient for the authorities to only transmit information
on relays that have updated information from the last con-
sensus document. This compression method is safe against
equivocation because the last consensus document is unique
and available.

We also notice that only the digest of the vote needs
to be transferred during the agreement phase instead of the

TABLE 1: The table displays the round type, its length (i.e.,
how many rounds of this type during a broadcast) (Co.), its
communication overhead in terms of signature length and docu-
ment length (Comm.), and the cryptographic overhead (number
of sign operations) over one broadcast (Crypto.). 𝑑 - document
length, in proportion to the number of relays. 𝜅 - signature
length, currently 512 bytes after base-64 encoding. 𝑓 - number
of adversarial authorities the protocol can tolerate. 𝑛 - number
of authorities. eq. - equivocation, i.e. the sender is adversarial.
sim. - simultaneously, i.e. the Synchronize Rounds and the Early
Termination run concurrently, so if one terminates the other will
also terminate. E.T. - Early Termination.

Type Co. Comm. Crypto.

Propose 1 (𝑑 + 𝜅)𝑛 1
Vote 1 (𝑑 + 2𝜅)𝑛2 𝑛

Sync (w/o eq.) sim. [𝑑 + (𝑓 + 2)𝜅]𝑛2 𝑛
E.T. (w/o eq.) 2 [𝑑 + (2𝑓 + 3)𝜅]𝑛2 𝑛
Sync (w/ eq.) 𝑓 [2𝑑 + 2(𝑓 + 1)𝜅]𝑛2 2𝑛
E.T. (w/ eq.) sim. [𝑑 + (𝑓 + 2)𝜅]𝑛2 0

TABLE 2: Communication overhead of the protocol. The table dis-
plays the protocol (Broadcast - one broadcast. C.D. - one consensus
document generation with 𝑛 broadcasts), the round complexity
(Ro.), the communication overhead in terms of signature length
and document length (Comm.), and the cryptographic overhead
(number of sign operations) (Crypto.). Assuming 𝑡 equivocations
in Consensus (w/ eq.). Notations are the same as in the previous
table.

Protocol Ro. Comm. Crypto.

Broadcast (w/o eq.) 4 (3𝑛2 + 𝑛)𝑑+
[(3𝑓 + 7)𝑛2 + 𝑛]𝜅 3𝑛 + 1

C.D. (w/o eq.) 5 (3𝑛3 + 𝑛2)𝑑+
[(3𝑓 + 7)𝑛3 + 2𝑛2]𝜅 3𝑛2 + 𝑛

Broadcast (w/ eq.) 𝑓 + 3 (4𝑛2 + 𝑛)𝑑+
[(3𝑓 + 6)𝑛2 + 𝑛]𝜅 3𝑛 + 1

C.D. (w/ eq.) 𝑓 + 4 (3𝑛3 + 𝑛2𝑡 + 𝑛2)𝑑+
[(3𝑓 + 7)𝑛3 + (2 − 𝑡)𝑛2]𝜅 3𝑛2 + 𝑛

full document, since any valid SYNC and NOTIFY message
must have a value that has been seen by every server in the
Bootstrap Phase. This discovery allows us to further reduce
communication complexity in practice.

5.7. Analysis of DirCast

We summarize the round complexity and the communi-
cation overhead in Table 1 and Table 2.
Round Complexity. For the core protocol, if the sender
is correct, the protocol terminates in 4 rounds, better than
previous (𝑓 + 1)-round simple protocols [9]. If the sender
is adversarial then the protocol terminates in at most 𝑓 +
3 rounds, which is 8 for a 9-server system. This is better
than the current state-of-the-art system designed to have a
constant number of rounds (currently 10) for a larger set of
servers [1].

After DirCast, one more round is needed for each au-
thority to collect all the signatures and publish the consensus
document. Therefore, after adapting our core protocol, the
whole consensus protocol terminates in 5 rounds in the best-
case scenario and 𝑓 + 4 rounds in the worst-case scenario.
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Communication Overhead. To generate a consensus doc-
ument for 𝑛 authorities with up to 𝑓 faulty authorities, our
protocol has a communication complexity of 𝑂(𝑛3(𝑑 + 𝑓 𝜅))
with or without equivocation from the sender. Here, a doc-
ument size is 𝑑 and a signature size is 𝜅. Further methods,
such as extension protocols [16], can be developed on top
of the protocol to reduce communication complexity at the
cost of protocol complexity.

6. Benchmark of DirCast
There are many questions we want to answer for our

protocol: (1) Is our protocol practical in the real world?
Can it be used by Tor authorities and generate consensus
documents on time? (2) Is our protocol efficient? How much
network and CPU time does it need to generate a consensus?
(3) Is our protocol scalable? How do we fare if the number
of relays continues to increase? To answer these questions,
we test our protocol compared to the current one based on
latency, throughput, and scalability.

6.1. Benchmark Setup

We implemented a prototype version of our protocol on
the existing Tor C code base. Due to many similarities, the
implementation is light-weight with about 1,000 lines of
code addition out of 13,000 lines of code in the Directory
Authority module, about 8 percent, as we took over the
Fetch Vote round in the original protocol and repurposed
it to the Agreement Phase. The prototype code is available
at https://github.com/zhtluo/DirCast.

6.2. Protocol Parameters

We set the number of authorities to reflect the current
situation of Tor, i.e. 9 authorities. We assumed that a quorum
is correct according to the protocol requirement and set the
protocol to tolerate up to 4 faults in the system.

In the real-world scenario, Tor authorities run one round
in 2.5 minutes and finish the protocol with 4 rounds in 10
minutes. They start the protocol and generate the consensus
document once every hour. We adjusted the round time
for the experiment to be shorter while ensuring that all
communications could still be completed within the time
frame. Based on the experiment we set the time length of
one round to be 24 seconds, and run the protocol once every
4 minutes.

We varied the number of relays up to 3,000 in the system
during the experiment, as the number of relays directly
affects the size of each message and hence impacts the
performance. We boot all these relays on an outside server
to simulate the message exchange with the authorities. We
also assumed that 15 percent of the relays updates their
information in every consensus document.

6.3. Server Specifications

We set up our experiment in a way that resembles real-
world Tor Directory Authority distribution. As of 2022, Tor

TABLE 3: Geographic Location of the Current Tor Directory
Authorities

Name Location

dizum Netherlands
dannenberg Germany

tor26 Austria
bastet United States

maatuska Sweden
moria1 United States

Faravahar United States
longclaw Canada

Directory Authorities have 5 nodes in Europe and 4 nodes
in North America (see Table 3). Therefore, we used 9 AWS
instances, of which 5 are in eu-central-1 location and 4 are
in us-east-2 location.

We assumed that the authorities had limited computing
powers and network bandwidth, as in the real world they
would also have to handle connections with clients. There-
fore, we used t2.micro AWS instances with 1 GB RAM, 8
GB hard disk, 1 vCPU running at up to 3.3 GHz, and a
bandwidth of 60-80 MBits/s for all authorities.

6.4. Test Cases

We tested our protocol’s performance in three different
situations with the test network. We first tested the current
insecure protocol on the network with the above-suggested
parameters and specifications. This served as a baseline for
measuring our protocol with the current behavior of the
Tor network. We then tested our secure protocol with all
authorities behaving correctly. This is the expected scenario
in the real world. We also tested the scenario where one
authority tried to split the consensus by equivocating, which
helped to demonstrate the security of the protocol and
allowed us to benchmark the situation when an exploit hap-
pens. We consider the scenario where multiple authorities
equivocate to be similar to the one-equivocation situation, as
the adversary has no significant advantage in this scenario
over just equivocating once.

6.5. Benchmark Criteria

6.5.1. Latency. Latency refers to the time between the start
of the protocol and the generation of the document. For a
lock-step setting such as Tor, latency depends on the round
time and the number of rounds. The round time is some-
what arbitrary both in our benchmark and in the real-world
scenario as long as it covers the network and CPU time, but
it still depends on how robust we want the protocol to be
against fluctuating network delay. However, by keeping the
round length consistent throughout our benchmark process,
we gauge how our protocol performs concerning the current
insecure protocol assuming a similar network environment.

Methodology. We fixed the round time in the test scenario
to 24 seconds. We booted 3,000 relays in the system and let
15% of the relays change their information every time the
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Figure 8: Average network and CPU time
for different phases of our protocol. PP -
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Figure 9: Network throughput in three test
scenarios, measured in consensus per hour.
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Figure 10: Prediction of throughput up to
10,000 relays. The protocol can generate up
to 500 consensus documents per hour.

protocol starts. We bootstrapped authorities to run the pro-
tocol in test repeatedly until all relays are in the consensus
document.

Result and Analysis. During our experiment, our protocol
was able to generate a consensus document with a 24-
second round time. Due to the similar round complexity, our
protocol finished in time comparable to the original insecure
protocol when all authorities behave correctly and there is
no equivocation, with a 25 percent increase in latency. Our
protocol finished in 120 seconds and the original protocol
finished in 96 seconds. Meanwhile, even if an authority
equivocates, we are still able to finish our protocol in 216
seconds with a relay count of 3,000 in the test scenario.

In the real-world scenario, if we use the current Tor
configuration of 2.5 minute per round, our protocol finishes
in 12.5 minutes when there is no equivocation, and 22.5
minutes with equivocation. This is within the one-hour mark,
so our protocol finishes on time if we use the 2.5-minute
round time.

6.5.2. Throughput. Throughput refers to how many con-
sensus documents we can generate in a certain amount of
time, assuming that we run as many test protocols as we
want in parallel. While we do not need to run multiple
protocols in parallel in the real world, this test helps us to
answer how efficient our protocol is, i.e. how much system
resource it takes to produce one consensus document.

Methodology. We varied the number of relays between 200,
1,000, 2,000, and 3,000. We let 15% of the relays change
their information every time the protocol starts. We mea-
sured each phase’s network and CPU time in the protocol
and computed the throughput from the measurements.

Result and Analysis. We plotted the average CPU and
network time of each phase in detail in Figure 8. We observe
that the Agreement Phase takes roughly one-third of the
network and CPU time of the whole protocol. While equiv-
ocation by one authority increases the message count of the
protocol, each authority sends at most 2 SYNC messages
in the Agreement Phase in one broadcast, so equivocation
does not impact throughput significantly. Figure 9 shows the
network’s throughput in the three test cases. We discovered

that equivocation by one authority does not significantly
decrease throughput, although it does increase latency.

We conclude that our protocol runs in comparable net-
work and CPU time to the current protocol because we
compressed our votes based on the consensus last round
(see Section 5.6), drastically cutting message size.

6.5.3. Scalability. For scalability, we consider it unlikely
that Tor will get new authorities in the foreseeable future.
Therefore, our main concern is the ever-increasing number
of relays in the system, and we predicted how the protocols
will fare as the number of relays increases. This helps us
visualize how our protocol will work.

Methodology. From the analysis of our protocol, the com-
munication overhead scales linearly with the size of the
document. Therefore, we perform a linear regression on
each protocol’s network and CPU time. We then compute
the throughput based on the regression result, up to 10,000
relays.

Result and Analysis. We observe that with the increase in
the number of relays, the round complexity of our protocol
stays the same, but the communication complexity scales
linearly as the document size increases. This observation
allows us to plot and predict the performance of our protocol
up to 10,000 relays, a 25 percent increase in the amount of
the real-world situation now.

From Figure 10, we conclude that our protocol can
generate up to 500 consensuses per hour with a relay count
of 10,000, comparable to the current insecure protocol. We
conclude that our protocol is practical to use in real-world
scenarios.

7. Related Work

7.1. Improvements on the Tor Consensus Protocol

There have been a few Tor proposals for making the
Tor consensus protocol more robust. Some proposals were
implemented, while some are in discussion. However, to the
best of our understanding, no proposal addresses the equiv-
ocation problem and the resulting vulnerabilities discovered
in this paper.
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Since Proposal 206 [19] was implemented, every Tor
client fetches the consensus document from a hard-coded
list of relays and authorities at boot time. This proposal is
designed to alleviate the bandwidth overload of authorities
but does not address the underlying security issue: an ad-
versarial server can still equivocate and serve clients and/or
relays with an incorrect consensus document.

Proposal 207 [17] allows the client to use directory
guards (which are the same as entry guards in the current
implementation) in the client’s current consensus document
to fetch an updated consensus document. The motivation of
the proposal is to reduce fingerprinting of client IPs done
by relays and authorities that serve consensus documents.
The proposal does not address the equivocation problem:
an adversary is still able to create equivocating documents,
and clients at boot time, as well as relays, are still vulnerable
to being served with an incorrect consensus document.

Proposal 239 [18] proposes that every consensus docu-
ment includes a list of hashes of previous consensus docu-
ments. While the proposal is still open for discussion, it does
not fully solve the equivocation vulnerability: the incorrect
consensus document can still include hashes of previous
correct consensus documents, and the adversary can create
a forked chain of consensus documents to avoid detection.
While the client may find out it has been compromised later
via a correct consensus document on some other fork, the
damage is already done.

Proposal 267 [15] proposes to establish consensus trans-
parency like certificate transparency [14] that allows con-
sensus to be traced to ensure validity. However, much
of the proposal is left unclear (there are 26 instances of
TODO/TBD in the original proposal, including both the
security discussion and the implementation specifications).
In the proposal, authorities submit their consensus to a
public logger to be logged. We think that depending on the
exact implementation, the logger can also become a central
point of failure. Ultimately, to ensure that the consensus
is consistent in a distributed system, we cannot sidestep the
Byzantine Agreement problem, the main problem we discuss
in this paper.

7.2. Byzantine Agreement (BA)

To generate Tor’s consensus document is to solve the
Byzantine Agreement (BA) problem on all relay parameters.
The problem informally requires that (i) all correct servers
with inputs output the same value, and (ii) if the inputs of
correct servers are all 𝑥, then the output of the correct servers
is 𝑥.

Abraham et al. [1] showed a randomized protocol in
a synchronous and authenticated setting, which achieves
expected 𝑂(1) round complexity and 𝑂(𝑛2) communication
complexity, and 𝑂(𝑓 ) round complexity with a deterministic
protocol [1]. These are the state-of-the-art approaches for
BA.

There are several variants of BA. One variant uses strong
validity, in which the output must be a value proposed by
at least one of the correct servers [11]. Another variant uses

median validity, in which the output of the protocol must
span the inputs of the correct servers [25]. The decision
about the inclusion of a relay uses everyone’s inputs, and
the computation of the bandwidths uses medians (see Sec-
tion 2.3). Hence, these works give another technique to
generate Tor consensus documents.

However, the authorities must agree on many values in
the consensus document: a list of relays, each relay’s flags,
version, protocol, bandwidth, and exit policy. Only some
values, such as a list of relays and bandwidth, can be merged
using such protocols. Therefore, we decided not to design
a protocol that deals with these values individually but to
design a protocol that achieves Interactive Consistency and
lets each authority compute the consensus document locally
instead.

7.3. Interactive Consistency (IC) and Byzantine
Broadcast (BB)

As we have reasoned in Section 5, the current consensus
protocol is an attempt to achieve Interactive Consistency
(IC) (Definition 5.1). Achieving IC in a 𝑛-server system
through 𝑛 simultaneous Byzantine Broadcasts (BBs) (Defi-
nition 5.2) is a common approach [10] that we have decided
to adopt.

The Dolev-Strong protocol [9] is a classic BB protocol
with 𝑓 + 1 round complexity. The paper also showed that
deterministic protocols tolerating 𝑓 faults must have at least
𝑓 +1 rounds. Our protocol is better than the traditional Dolev-
Strong protocol regarding optimistic latency. The advantage
comes with little overhead: even though our protocol is more
costly than previous protocols such as Dolev-Strong [9] in
terms of using more signatures, signature length in the proto-
col is relatively insignificant compared to document length,
so our protocol does not invoke a significant communication
complexity increase; meanwhile, our protocol can achieve an
optimistic latency decrease from 750 seconds to 600 seconds
with the current Tor setting, a 20% improvement. While the
Dolev-Strong protocol fares better in the pessimistic case,
we consider a failure in the Tor consensus protocol unlikely,
so we did not optimize for the situation. To illustrate the
point, we compute the total communication complexity in
both broadcast protocols, assuming a typical 1000-relay
update (see Table 4). We conclude that our protocol incurs
a communication overhead of less than 2%, with notable
benefit in optimistic latency. Our protocol also supports
more authorities without increasing optimistic latency, while
Dolev-Strong incurs a linear overhead increase.

The randomized protocol by Abraham et al. [2] is state-
of-the-art, achieving optimal early stopping, optimal re-
silience, and polynomial complexity [2]. Our solution cannot
use randomized protocols due to their large cryptographic
overheads or the expensive distributed setup requirement.

8. Concluding Remarks and Future Work

This paper demonstrates a vulnerability in the deployed
consensus mechanism used by Tor DAs. The exploit shows
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TABLE 4: Comparison between our broadcast protocol and the
Dolev-Strong protocol based on a typical 1000-relay update, 9
authorities and a 150-second round time. We use a signature length
of 502 bytes, a digest length of 53, and a relay entry length of 337,
mirroring real-life Tor consensus documents.

Overhead Our Protocol Dolev-Strong

Latency (Optimistic) (s) 600 750
Latency (Pessimistic) (s) 1050 750

Communication (Optimistic) (MB) 31.0 30.4
Communication (Pessimistic) (MB) 31.1 30.6

the inherent difficulty in designing a secure consensus pro-
tocol for the production environment: even what looks like
a simple mechanism can fail in multiple surprising ways
and may result in exploits with real-world implications.
Furthermore, the exploit can be carried out by one Directory
Authority and is not detectable with the current monitor or
client, and not observable even if we have archived every
consensus document since the beginning of the protocol. To
address the issue, we provided TorEq, a short-term remedy
that uses a consensus monitor to detect such exploits.

We also observe that it is important to design protocols
in which safety can be proven. Towards that end, we define
the Tor consensus process as the interactive consistency (IC)
primitive in the distributed computing world. We then design
DirCast, a secure Byzantine broadcast (BB) protocol that
could replace the current flawed protocol in use and provides
proven security of IC realization based on the BB proto-
col. The protocol finishes in five rounds in the optimistic
scenario and nine rounds in the worst-case scenario in a 9-
node DA system. Based on benchmarks, we predict that the
protocol can generate up to 500 consensus documents per
hour in a geographically distributed system resembling Tor’s
DAs and a relay size similar to real-world situations. We take
special care to ensure that our protocol resembles the current
Tor DA consensus protocol as we develop the prototype
within 1,000 lines of code. We, therefore, conclude that our
design is simple and practical to be utilized in real-world
scenarios.

Keeping immediate real-world usability in mind, our
proposed solution follows the adversary and network as-
sumption of the current Tor consensus protocol: tolerating
any minority of corruptions in the bounded-synchronous
setting. Given that Tor needs to run this consensus process
once every hour, the bounded-synchrony assumption seems
acceptable. Nevertheless, in the future, it can be interesting
to design a secure Tor DA consensus protocol in a partial
synchronous or asynchronous communication model. How-
ever, it will be a drastic departure from state of the art:
the number of tolerable failures reduces to a maximum of
𝑛 ≥ 3𝑓 +1; we cannot solve the IC problem and have to resort
to a weaker version called vector consensus [7] where inputs
from 𝑓 honest parties may not be considered. Nevertheless,
to deal with the network asynchrony correctly, it can be
interesting to define a novel network model and propose the
Tor DA consensus process in that model.
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Appendix A.
Meta-Review

A.1. Summary

The Tor anonymous communication system relies on
9 Directory Authorities (DAs) to construct a consensus
document containing a list of the network’s relays and
their properties. This paper demonstrates that the Directory
Authority consensus protocol does not guarantee consensus
in the malicious setting—a minority set of authorities can
launch an equivocation attack that may produce two distinct,
valid consensus documents. Tor clients rely on this consen-
sus document for critical functions, such as choosing overlay
network paths, and the authors explore how client security
may be compromised as a result of equivocation. This paper
constructs two possible solutions to the attack: (1) TorEq,
an external consensus monitoring system; and (2) DirCast,
a byzantine broadcast protocol that the authorities can run
in parallel to provably reach consensus.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) This paper clearly identifies a crucial flaw in Tor’s
consensus mechanism and demonstrates the vulnerabil-
ity with a safe, simulated experiment using real code.
Tor is an important privacy tool with millions of daily
users, so the finding is significant. The implications of
the flaw are explained clearly and convincingly.

2) To our knowledge, this work is the first to (1) view
the Tor consensus mechanism as a formal distributed
systems problem, (2) suggest notions of security, and
(3) apply a Byzantine Broadcast protocol to reach
consensus.

3) The tools and code developed for this paper are avail-
able for use and will likely make Tor safer in the near
term. We hope this paper motivates Tor’s adoption of
a provably correct consensus protocol such as DirCast.
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