
1

Curriculum Design of Competitive Programming:
a Contest-based Approach

Zhongtang Luo

F

Abstract—Competitive programming (CP) has been increasingly inte-
grated into computer science curricula worldwide due to its efficacy in en-
hancing students’ algorithmic reasoning and problem-solving skills. How-
ever, existing CP curriculum designs predominantly employ a problem-
based approach, lacking the critical dimension of time pressure of real
competitive programming contests. Such constraints are prevalent not
only in programming contests but also in various real-world scenar-
ios, including technical interviews, software development sprints, and
hackathons.

To bridge this gap, we introduce a contest-based approach to cur-
riculum design that explicitly incorporates realistic contest scenarios into
formative assessments, simulating authentic competitive programming
experiences. This paper details the design and implementation of such
a course at Purdue University, structured to systematically develop stu-
dents’ observational skills, algorithmic techniques, and efficient coding
and debugging practices. We outline a pedagogical framework com-
prising cooperative learning strategies, contest-based assessments, and
supplemental activities to boost students’ problem-solving capabilities.

1 Introduction
Competitive programming (CP), the practice of solving
and programming pre-defined algorithm problems, has
been widely recognized as an effective way to improve
students’ problem-solving skills and algorithmic thinking.
On one hand, theoretical analysis has shown that CP prob-
lems highly align with computer science curriculum guide-
lines [1]. On the other hand, empirical evidences have also
demonstrated that CP has considerable educational benefit,
including measurable improvement in students’ problem-
solving skills, motivation, as well as retention rates [2],
[3]. As a result, educators around the world have started
to incorporate elements of CP into their courses, including
Brazil [2], [3], Mainland China [4], [5], Hong Kong [6],
India [7], and the United States [8].

However, as we analyze these literatures, most curricu-
lum designs of competitive programming are problem-based:
a set of algorithmic problems are assigned with very loose
due-date constraints, and students can choose to solve them
at their own pace. While such designs are not without their
own merit, we observe that these courses left out the time
factor in competitive programming: in a real contest, par-
ticipants are required to solve problems under demanding
time constraints. For example, in the ICPC contest series [9],
teams are usually given 10 or more problems to solve in
5 hours with one computer; in Codeforces [10] — one of
the most popular online programming contest platforms —

TABLE 1
Comparison between the three courses.

Course Focus

CS 21100 Basic observation skills. Some techniques on
graph problems.

CS 31100 Summarization and expansion of CP1 observation
skills. Basic techniques on various topics.

CS 41100 Review of CP1 observation skills and CP2 tech-
niques. Advanced techniques and implementation
practices.

participants are given 2 hours to solve 5 problems. All of
these translate to less than 30 minutes of computer time per
problem. Therefore, these contests not only test students’ al-
gorithmic knowledge, but also their ability to code efficiently
under pressure.

We argue that such time pressure is not artificial but
present in many real-world scenarios as well. For example,
the Scrum framework [11] requires developers to produce
results daily and teams to complete a ‘sprint’ every 1–4
weeks. Technical interviews are known to be stressful, and
part of the stress is also attributed to the time factor [12].
Various activities, such as game jams hackathons, also re-
quire participants to produce results in a very limited time.
Therefore, we believe that time pressure is ubiquitous in
computer science in the real world.

Therefore, to promote better performance in program-
ming contests and real-world scenarios, we propose a
contest-based curriculum design of competitive program-
ming, where formative assessments are designed to mimic
the time pressure of real contests. In this paper, we will
present our course design at Purdue University and discuss
various trade-offs.

2 Organization of the Course
In Purdue University, competitive programming courses are
divided into three levels: CS 21100, CS 31100 and CS 41100,
known as CP1, CP2 and CP3, respectively. Each course is
a 2-credit 12-week short course, and builds on the prior
course to expand the students’ knowledge of competitive
programming. A comparison of the focuses of the three
courses can be found in Table 1.

This curriculum design is focused on CS 41100, although
we believe the ideas can be applied to other levels as well.

2

3 Course Design
In this section, we present our course design based on
discussion of content, assessment and pedagogy.

3.1 Content
The overarching idea of our course is to enable students
to solve algorithmic problems efficiently. Unfortunately,
problem-solving has long been known to involve extensive
tacit knowledge [13]. Therefore, we aim to define our en-
during outcomes in a way that sheds dome light on the
outcomes we deem necessary for problem-solving under the
computer science context.

3.1.1 Enduring Outcomes
Based on our anecdotal experience, we consider that com-
petitive programming problems need three aspects of
skill: observation, technique, and implementation [14]. Loosely
speaking, observation is the observational ability to reduce
an unknown problem to an easier problem; technique rep-
resents the already known knowledge about algorithms
and data structures; and implementation is the ability to
translate the solution into a working program. We note that
while there are no clear boundaries between these three
aspects, some topics may still be considered to be more ob-
servational, as a greater emphasis is placed on understand-
ing and reducing the problem, such as greedy, dynamic
programming, and combinatorial problems. Other topics
may be more technical, requiring more fixed knowledge,
such as geometry, segment trees, and strings. Therefore,
we articulate our enduring outcomes based on these three
aspects:
EO-1. Observation skills reduce a new algorithmic prob-

lem to a known problem that can be solved.
EO-2. Techniques solve known algorithmic problems effi-

ciently.
EO-3. Implementation by coding and debugging builds a

solution.

3.1.2 Important-to-Know & Supplemental Outcomes
Given that the topic of the course is competitive program-
ming, we aim for student agency in our important-to-know
outcomes. Specifically, since the field of competitive pro-
gramming is vast, and there is simply no way that any
course can cover all the topics, we show our students ways to
continue learning and practicing after the course to further
their knowledge of the enduring outcomes. We define our
important-to-know outcomes as such:
IO-1. Algorithm design is an iterative process that involves

trial and error and building upon previous iterations.
IO-2. Relevant techniques to solve known problems can be

researched and studied online.
IO-3. Efficiency in algorithm design, coding, and debugging

can be gained through repeated practice.
For supplemental outcomes, we focus on ICPC — the

most relevant contests for college students. Given the special
format of ICPC contests requiring extensive teamwork and
reference, we define our supplemental outcomes accord-
ingly:

SO-1. To succeed in competitive programming, one must
allocate time strategically and cooperate with team-
mates.

SO-2. Special techniques and templates are prepared and
used to help competitive programming.

SO-3. Setting competitive programming problems requires
creativity and a deep understanding of relevant con-
cepts.

4 Assessment
In this course, we will try to give formative assessments that
resembles competitive programming contests. We recognize
that similar to timed tests, contests often introduce test
anxiety if students have a reason to worry about their per-
formance [15]. Therefore, we place the bulk of our grading
on post-contest activities, while provide some incentive for
students to performwell in the contests. In this way, we hope
to provide a safe net for students to alleviate their anxiety,
while simultaneously providing a realistic environment for
them to practice and adapt to the time pressure.

4.1 Learning Objectives
We base our assessment on the following learning objec-
tives:

Students will be able to …
LO-1. Select and apply appropriate techniques covered in

CP1 (DFS/BFS, Shortest Path, Floodfill, Topological Sort,
Tarjan, Union Find Set, Minimum Spanning Tree), CP2
(Binary Exponentiation, Linear Sieve, ExGCD, Combina-
torics, Inclusion-Exclusion, Sparse Table, Fenwick Tree,
Basic Computational Geometry, Convex Hull, Rolling
Hash, Trie) and CP3 (Half-Plane Intersection, Adaptive
Simpson, Linear Recurrence, Segment Tree, LCA, HLD,
Network Flow, KMP, AC Automata) to solve known
algorithmic problems. (EO-2)

LO-2. Implement and debug a solution to algorithmic prob-
lems efficiently. (EO-3)

LO-3. Combine LO-1 – LO-3 to solve algorithmic problems,
performing at Candidate Master (rating 1900+) level
in Codeforces contests. (EO-1 – EO-3, IO-1 – IO-3)

4.2 Performance Task — Contests
When designing our contest, we need to budget it under
the logistic limit of our class time. While we believe that an
ICPC style contest of five hours provides immense practice
for our students and helps boost their experience with real
contests, we recognize that such time slot is not feasible in
a classroom setting. In the end, we decide to adopt a 90-
minute contest which fits in most classroom settings with
minimal adjustment.

In line with the three enduring outcomes, we decide to
provide three problems every contest session. Given that
contest participants usually pick and solve problems within
their reach rather than solving every of them, we emphasize
to our students that they are not expected to solve every
problem in the contest. Instead, we encourage them to
bring unsolved problems back home and upsolve them as
homework before the due date. We provide a detailed rule
set for the contest in Section A.1.1 in the sample syllabus.

3

We also provide a sample contest with three problems in
Section C in the appendices.

To design our grading rubric, we consider the expected
performance of students in our class. A perfect student,
in our opinion, should be able to solve 2 problems every
session. On the lower end, we believe that students who
demonstrate an acceptable understanding of our course
should be able to upsolve every problem after the contest.
We budget in standard leniency of two free drops and three
late days to account for difficulties and unexpected events.
We provide a detailed grade scheme in Section A.2 in the
sample syllabus.

4.3 Supplemental Activities
During the evolution of this course over the years, we have
considered various ways to allow the students to further
their understanding of competitive programming. We list a
few of our attempts below.
Note Sharing In the first iteration of the course, we have
designed a note sharing program that allows interested
students to take notes for the class and submit them for
extra credit. A total of 6 points can be earned through this
program, with the following rubric:
1) 2 points for the general flow of the course and concepts;
2) 2 points for the first problem discussed in the class;
3) 2 points for the second problem discussed in the class.

We find that while the students are motivated to sign up
and provide notes, the notes often become a verbatim reiter-
ation of what happened during the lecture with numerous
mistakes, and are very costly both for the instructor and the
student to fix. As a result, we provide detailed slides in the
next iteration of the course and discontinue the program.
Student-Proposed Topics In order to encourage students to
explore and study topics that are not covered in the course
(IO-2), we provide a list of advanced topics for students to
vote in class and study individually. We also allow students
to team up and present the topic for extra credit. We set the
following requirement for the extra credit:
1) Study the topic and solve the sample problem.
2) Create a reference that helps with problem-solving of

the topic.
3) Present the topic, the solution and the reference to the

class.
4) Propose and solve 3 suitable problems to be used for

that week’s contest.
A rubric matching the requirements is provided in Ta-

ble 2.
To accommodate for students who are not able to do a

presentation, we allow them to submit a self-study report on
the topic they selected for extra credits. We grade the report
on:
1) Provide a short tutorial to the topic. It should be under-

standable to the average student in CP3. Wrong and/or
unintelligible explanation will reduce the point. (2 pts)

2) Pick one problem that requires the technique. It should
not be solvable by something significantly easier than
the topic. Provide a tutorial on how to solve the prob-
lem. It should be understandable to the average student
in CP3. Wrong and/or unintelligible explanation will
reduce the point. (2 pts)

3) Implement and solve the problem. (2 pts)
Overall, we find that the students are engaged with the

student presentation and provide much discussion. How-
ever, we also find that the presentation has a tendency
to focus on the implementation details of the topic rather
than insights of the general problem-solving observations.
For instance, in the fast Fourier transform, students may be
more inclined to discuss operations of complex number and
the butterfly diagram in great details, while leaving out the
part of how to form the problem as polynomials that can be
multiplied together.

We think that the project is a good way to provide
student motivation and engagement, but presentation qual-
ity may be sacrificed a bit as the student (rather than the
instructor) is doing the work. We did not include the project
in the next iteration of the course, but we may bring it back
in the future.
Problem Setting In the most recent iteration of the course,
we have introduced a problem setting project that allows
students to propose and set a competitive programming
problem for future uses. This is in line with our supple-
mental outcomes SO-3. We provide a detailed description in
Section A.1.1 in the sample syllabus.

A total of 3 problems have been set by the students. We
find that the students are able to provide interesting prob-
lems with good difficulty. However, we also find that given
that the problems are new and not tested, the instructor
needs to spend a significant amount of time reviewing the
problems and providing feedback.

5 Pedagogy
We observe that a course in competitive programming is
significantly different from a course in algorithms and com-
plexity. In this course, we often care little about the theoretic
underpinning of the algorithms, but rather how to reduce
unknown problems and solve them efficiently. This section
reflects our understanding of the pedagogy of this course.

5.1 Course Schedule
We think the course schedule can be somewhat arbitrary,
since in competitive programming, the topics are like a
web that does not show a clear hierarchy. However, we
consider the following rationales when designing the course
schedule:
1) We start with implementation and geometry problems.

This is to introduce students to implementation details
(EO-3), which is often overlooked in lower levels of
competitive programming.

2) We start the topic of range queries, including Fenwick
trees, RMQ and segment trees, early. This is because
range queries are common tools in advanced compet-
itive programming, and this arrangement allows us
to interlace various applications of range queries in
different topics throughout the course.

3) We separate topics by being more observation-heavy
or technique-heavy. We distribute them throughout the
course, and set up a team contest for technique-heavy
topics. This is because technique-heavy topics tend to
demand more coding, and we believe a team effort can
reduce the workload for individual students.

4

TABLE 2
Rubric for presentation of student-proposed topics.

Criteria A (2pts/ea.) B (1.5pts/ea.) C (1pts/ea.) D (0pts/ea.)

Study Solve the sample problem
and prepare a reference.

Solve the sample problem. Propose a solution to the
sample problem.

Not able to solve the prob-
lem.

Presentation Present the technique, the
problem, the solution, and
the reference.
Explain how the tech-
nique and the solution
work. Go through the
code and the reference in
detail.

Present the technique, the
problem, and the solution.
Explain how the tech-
nique and the solution
work. Go through the
code in detail.

Present the technique and
the problem to the class.
Explain how the tech-
nique works.

Not able to present any-
thing.

Proposal Propose and solve 3 suit-
able problems.

Propose and solve 2 suit-
able problems.

Propose and solve 1 suit-
able problem.

Not able to propose any
suitable problem.

If chosen, the student automatically gets 2 points for every problem he/she proposes in the contest. The student also gets an extra maximum of 6
points, subject to the rubric above.
The expectation is that every student should provide 2-3 codes (for a total of 6) and do either the recitation on the topic or 1-2 problems. In case
of significant under-performing by some student, the effort will be graded separately.

A tentative schedule is provided in Section A.2.2 in the
sample syllabus.

5.2 Lesson Plan
The plan for one lecture involves three activities:
1) code presentation for the previous contest; (30 min)
2) introduction of new concepts; (15 min, or as needed)
3) in-class problem discussion. (15–30 min per problem)

Code Presentation In this activity, we invite the first solver
for every problem of the previous contest to introduce their
solution and present their code. We believe that this activity
is beneficial for multiple reasons.
1) It provides a good review for the previous week. One

common issue of competitive programming classes is
that since the topics are often scattered, it is easy to
forget what happened in the course. This activity re-
views the material after one week and aims to improve
retention.

2) It aids student engagement and motivation. It is be-
lieved that having students describe their challenges
in the class and how they overcome them can help
motivate other students [16]. When students describe
how they solve difficult problems, they set a role model
that inspires other students as well.

3) It helps with implementation practice. Efficient imple-
mentation (EO-3) is a skill-based knowledge that is of-
ten difficult to acquire. By having students present their
code, we can discuss various implementation details
and help students improve their coding skills based on
the example.

Introduction of New Concepts When introducing new
concepts, we believe that instead of providing a detailed
description of the theoretical underpinning of the concept,
it is more beneficial to provide an interface of the concept
that can be used in problem-solving, say “see the reference
for a piece of code, and google it if you want to learn
more theory,” and then dive into a problem that requires
the concept. For example, when teaching network flow, it
is enough for the students to understand the network flow
problem and that there are algorithms in the reference that
solve the problem. Due to the time limit of the course, it

is impractical and unnecessary to introduce detailed algo-
rithms such as Dinic or Edmonds-Karp, since understanding
these algorithms takes a lot of time yet contributes little to
the actual problem-solving.
In-Class Problem Discussion We spend the bulk of the
class time on in-class problem discussion. We believe that
since observation skill (EO-1) is tacit knowledge that can
only be demonstrated on specific problems, it is important
to provide students with a variety of problems to learn and
practice the skill.

We give a handout every class that contains the learning
objectives and the problems. We select these problems from
real contests to provide an authentic experience for the
students. We provide a sample handout in Section B in the
appendices.

Given the relative small size of the class, it is feasible for
the instructor to assign a problem, and then walk around
to engage with the students about their thinking. We also
observe that students simultaneously discuss their thoughts
with each other as the problems are often at a higher
difficulty level.

5.3 Cooperative Learning

Given that competitive programming requires extensive
tacit skills, we believe group-based cooperative learning can
help students to learn from each other [17].

To achieve this goal, we designed team contests that
require students to work in teams of two or three, mimicking
the ICPC contest format (see Section A.1.1 in the sample
syllabus for detailed rules). Given that there are vast skill
gaps between different students, we use the result from the
previous individual contest as a criterion to assign one-third
of the students as team leaders. We then distribute the rest
of the students randomly.

To facilitate cooperation, we give full points to every stu-
dent whose team solves a problem. This provides extrinsic
motivation for students to cooperate and help each other.
To avoid the free rider problem, we require that each team
member may solve at most one problem in the contest. In
practice, we observe that the team often allocates easier

5

problems to the less experienced team members, and vise-
versa. We consider it a good outcome that every student in
the team is working on a problem that is at their level.

Given that the problems in the contest are often at
a high difficulty level, we observe that students tend to
simultaneously engage in detailed discussion with team
members during the contest, and report that team contests
feel easier than individual contests. We also observe that the
team leaders often take the role of explaining the solution to
the team members and overseeing their coding process. We
believe that these interactions are beneficial for the students
to learn from each other.

5.4 Use of Code Reference
Similar to the ICPC contest and online contests, we allow
students to bring unlimited printed materials to the contest
(see Section A.1.1 in the sample syllabus). We ban the use
of copy-pasting code from the computer to avoid students
storing solutions for every problem. We believe that the use
of code reference is beneficial because the students can focus
on problem-solving instead of memorizing algorithm codes.
We also provide a code reference that contains everything
the class needs on GitHub [18].

5.5 Difficult Concepts
During the course, we observe that students often struggle
with some tacit concepts that competitive programming
differs from other computer science subjects. We list a few
of them below.
1) Negative transfer from other algorithm courses. Com-

petitive programming drastically differs from other al-
gorithm courses in that it forgoes rigorous theoretical
analysis and focuses on problem-solving.
a) Intuition is more important than proof. In com-

petitive programming, having an idea of something
that may work is often enough. Anecdotally, we find
that fixiation on the proof can harm one’s observation
skills (EO-1) if they are afraid of coding or reasoning
based on a guessed hunch. In contrast, it may be
helpful to emphasize to students that they can guess
anything reasonable as long as they cannot find a
counterexample [19], and success in competitive pro-
gramming is defined by having a solution that works
for the test cases.

b) Implementation matters! Students from algorithm
courses often find implementation-heavy problems
(EO-3) to be boring as they don’t seem to carry any
theoretical weight. However, we observe that ICPC
contests often have implementation-heavy problems
that must be addressed. For example, every ICPC
World Finals has a geometry problem that requires
extensive implementation. In ICPC ECNA 2023, four
problems in the less solved half are geometry/pure
search problems. We find that it is often helpful to
emphasize that it is worth considering the easiest
way to implement a solution. For instance, in grid
searching, the following code
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
for (int i = 0; i < 4; i++) {

int nx = x + dx[i], ny = y + dy[i];
// ...

}

is often easier to write and debug than repeating the
same logic four times. We also find that emphasiz-
ing to students that software engineering jobs often
require extensive implementation skills can help mo-
tivate them.

2) Don’t force a technique onto a problem. We find
that sometimes knowing the topic of the week can
create an adverse effect to the students, as they tend
to treat the technique as a panacea ritual and stop
thinking altogether. The effect is most pronounced in
general techniques such as segment trees, as students
sometimes draw a segment tree and try to blindly feed
input data into the tree, rather than thinking about
how to solve the problem first. We find this story [20]
resonates with students pretty well:
Knowing what to do with numbers is certainly the heart and
soul of basic arithmetic. However, knowing what to do can
mean rather different things. I have always been charmed
by this example from an elementary school child reported a
number of years ago:
I know what to do by looking at the examples. If there are only
two numbers I subtract. If there are lots of numbers I add. If
there are just two numbers and one is smaller than the other
it is a hard problem. I divide to see if it comes out even and if
it doesn’ t I multiply.
During the in-class problem discussion, it may be ben-
eficial to explicitly show the difference between solving
a problem and then applying a segment tree at the last
step and drawing a segment tree and then trying to
blindly fit data in.

6 Execution of the Course
We taught the class twice in Spring 2024 and Spring 2025.
The students may take the class either for normal grades
or for pass/fail. Of the 14 students that took the course in
2024, 6 chose normal grades and 8 chose pass/fail. All the 6
students attained an A or above grade, and all the 8 students
attained a P grade.

Incidentally, students in the course also represented
Purdue University in the ICPC 2022 and 2024 series. The
2022 team advanced to the World Finals, and the 2024 team
advanced to the North America Championship.

7 Future Improvements
No design is perfect. We list a few of the improvements we
can make in the future.
1) Build more scaffolding for topics. We observe that

there exists a significant gap from acquiring knowledge
in class to immediately applying it in the contest. There-
fore, it may be beneficial to provide one scaffolding
problem together with the tutorial that may be solved
before the contest. The problem will be graded based
on completion and can serve as a gentle warm-up for
the contest.

2) Extra credit on improving the reference. We find that
students often underappreciate the importance of code

6

reference (SO-2), sometimes even showing up to the
contest without one. As a result, we can provide extra
credit for students who help to improve the current
reference. The student will propose the scope of the
improvement and the corresponding credit. Upon ap-
proval and completion, the student will receive the
credit. We hope that this activity helps the students to
build a sense of ownership of the reference and improve
their problem-solving skills through self-guided explo-
ration (IO-2).

8 Conclusion
In this paper, we proposed a contest-based curriculum de-
sign for competitive programming (CP), aimed at address-
ing the limitations of existing problem-based approaches by
incorporating realistic time pressures into formative assess-
ments. By embedding authentic contest scenarios into the
educational framework, our curriculum explicitly empha-
sizes observational skills, technical knowledge, and efficient
implementation — three critical competencies required for
success in both competitive programming contests and real-
world computing scenarios.

Initial results from deploying our contest-based ap-
proach show promising outcomes, with students achieving
significant academic success and demonstrating competitive
excellence in programming contests. Ultimately, our cur-
riculum aims not only to produce competent competitive
programmers but also skilled, agile problem-solvers capa-
ble of navigating complex challenges in diverse computing
contexts.

References
[1] A. Laaksonen, “What is the competitive programming curricu-

lum?” Olympiads in Informatics, vol. 16, pp. 35–42, 2022.
[2] I. N. Bandeira, T. V. Machado, V. F. Dullens, and E. D. Canedo,

“Competitive programming: A teaching methodology analysis
applied to first-year programming classes,” in 2019 IEEE Frontiers
in Education Conference (FIE), 2019, pp. 1–8.

[3] W. S. de Picanço, J. M. M. de Lucena, A. F. de Lira, and V. F.
de Lucena, “Didactic framework for teaching C programming lan-
guage: A proposal based on cooperative and competitive learning
techniques,” in 2018 IEEE Frontiers in Education Conference (FIE),
2018, pp. 1–9.

[4] B. Du, J. Yang, S. Wu, Z. Zhang, and Y. Liu, “Enhancing pro-
gramming competition performance: A data-driven approach to
personalized training,” in 2024 IEEE 24th International Conference
on Software Quality, Reliability, and Security Companion (QRS-C),
2024, pp. 417–422.

[5] Y. Luo and H. Zheng, “An innovative teaching mode based on
programming contest,” inApplication of Intelligent Systems inMulti-
modal Information Analytics, V. Sugumaran, Z. Xu, and H. Zhou,
Eds. Cham: Springer International Publishing, 2021, pp. 469–477.

[6] K. K. F. Yuen, D. Y. W. Liu, and H. V. Leong, “Competitive
programming in computational thinking and problem solving
education,” Computer Applications in Engineering Education,
vol. 31, no. 4, pp. 850–866, 2023. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22610

[7] R. Raman, H. Vachharajani, and K. Achuthan, “Students moti-
vation for adopting programming contests: Innovation-diffusion
perspective,” Education and Information Technologies, vol. 23, no. 5,
pp. 1919–1932, 2018.

[8] O. Astrachan, “Non-competitive programming contest problems
as the basis for just-in-time teaching,” in 34th Annual Frontiers in
Education, 2004. FIE 2004., 2004, pp. T3H/20–T3H/24 Vol. 1.

[9] ICPC Foundation, “The ICPC international collegiate program-
ming contest,” https://icpc.global, 2025, accessed: 2025-03-28.

[10] M. Mirzayanov, “Codeforces,” https://codeforces.com, 2025,
accessed: 2025-03-28.

[11] V. Hema, S. Thota, S. Naresh Kumar, C. Padmaja, C. B.
Rama Krishna, and K. Mahender, “Scrum: An effective software
development agile tool,” IOP Conference Series: Materials Science
and Engineering, vol. 981, no. 2, p. 022060, dec 2020. [Online].
Available: https://dx.doi.org/10.1088/1757-899X/981/2/022060

[12] M. Behroozi, S. Shirolkar, T. Barik, and C. Parnin, “Does stress
impact technical interview performance?” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 481–492. [Online]. Available:
https://doi.org/10.1145/3368089.3409712

[13] R. J. Sternberg, “What do we know about tacit knowledge? making
the tacit become explicit,” Tacit knowledge in professional practice:
Researcher and practitioner perspectives, pp. 231–236, 1999.

[14] Z. Luo, “The reason you are bad at Codeforces — you are not
Russian enough,” https://zhtluo.com/cp/the-reason-you-are-bad
-at-codeforces-you-are-not-russian-enough.html, 2024, accessed:
2025-03-28.

[15] D. W. P. and, “Deconstructing test anxiety,” Emotional and
Behavioural Difficulties, vol. 13, no. 2, pp. 141–155, 2008. [Online].
Available: https://doi.org/10.1080/13632750802027713

[16] W. J. McKeachie and M. Svinicki, McKeachie’s Teaching Tips: Strate-
gies, Research, and Theory for College and University Teachers, 14th ed.
Belmont, CA: Wadsworth, Cengage Learning, 2013, see p. 184.

[17] D. W. Johnson and R. T. Johnson, “Making cooperative learning
work,” Theory into practice, vol. 38, no. 2, pp. 67–73, 1999.

[18] Z. Luo, “Competitive programming reference,” 2025, accessed:
2025-03-30. [Online]. Available: https://github.com/zhtluo/cp-r
eference/

[19] ——, “All you need is randomly guessing — how to improve at
Codeforces,” Mar. 2024, accessed: 2025-03-30. [Online]. Available:
https://zhtluo.com/cp/all-you-need-is-randomly-guessing-how
-to-improve-at-codeforces.html

[20] D. Perkins, Making Learning Whole: How Seven Principles of Teaching
Can Transform Education. San Francisco, CA: Jossey-Bass, 2010.

https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22610
https://icpc.global
https://codeforces.com
https://dx.doi.org/10.1088/1757-899X/981/2/022060
https://doi.org/10.1145/3368089.3409712
https://zhtluo.com/cp/the-reason-you-are-bad-at-codeforces-you-are-not-russian-enough.html
https://zhtluo.com/cp/the-reason-you-are-bad-at-codeforces-you-are-not-russian-enough.html
https://doi.org/10.1080/13632750802027713
https://github.com/zhtluo/cp-reference/
https://github.com/zhtluo/cp-reference/
https://zhtluo.com/cp/all-you-need-is-randomly-guessing-how-to-improve-at-codeforces.html
https://zhtluo.com/cp/all-you-need-is-randomly-guessing-how-to-improve-at-codeforces.html

7

Appendix A
Sample Syllabus
We provide a sample syllabus for the course.

A.1 Course Description
CP3 teaches experienced programmers additional tech-
niques to solve competitive programming problems and
builds on material learned in CP1 and CP2. This includes
algorithmic techniques. Primarily, CP3 prepares students to
compete in programming contests, which means most class
time is focused on simulating contest environments and
teaching teamwork and communication alongside problem
practice.

The course revolves around three aspects that are essen-
tial in problem-solving. Together they form the enduring
outcomes of the course:
EO-1. Observation skills reduce a new algorithmic prob-

lem to a known problem that can be solved.
EO-2. Techniques solve known algorithmic problems effi-

ciently.
EO-3. Implementation by coding and debugging builds a

solution.
A comparison of CP1, CP2 and CP3 is available below:
Course Focus

CS 21100 Basic observation skills. Some techniques on
graph problems.

CS 31100 Summarization and expansion of CP1 observation
skills. Basic techniques on various topics.

CS 41100 Review of CP1 observation skills and CP2 tech-
niques. Advanced techniques and implementation
practices.

A.1.1 Learning Outcomes & Assessment
Students will be able to …
LO-1. Select and use appropriate observation skills cov-

ered in CP1 (Search, Greedy, Dynamic Programming,
BSTA), CP2 (Pruning, Perspective, Sweep Line, Mono-
tonic Queue, Dynamic Programming on Tree, DFS Order
on Tree, Bitmask) and CP3 (Monotonicity, Offline) to
understand and reduce problems to known algorith-
mic problems. (EO-1)

LO-2. Select and apply appropriate techniques covered in
CP1 (DFS/BFS, Shortest Path, Floodfill, Topological Sort,
Tarjan, Union Find Set, Minimum Spanning Tree), CP2
(Binary Exponentiation, Linear Sieve, ExGCD, Combina-
torics, Inclusion-Exclusion, Sparse Table, Fenwick Tree,
Basic Computational Geometry, Convex Hull, Rolling
Hash, Trie) and CP3 (Half-Plane Intersection, Adaptive
Simpson, Linear Recurrence, Segment Tree, LCA, HLD,
Network Flow, KMP, AC Automata) to solve known
algorithmic problems. (EO-2)

LO-3. Implement and debug a solution to algorithmic prob-
lems efficiently. (EO-3)

LO-4. Combine LO-1 – LO-3 to solve algorithmic problems,
performing at Candidate Master (rating 1900+) level
in Codeforces contests. (EO-1–EO-3)

Performance Task To assess LO-1–LO-4, the student is
provided with three competitive programming problems
every assessment session (contest). The online judge web-
site grades every problem on a pass/fail basis. The student

gets instant feedback and can revise within the time frame.
The student is either assessed individually or in teams of
three. The student is tasked to solve the problems with the
following rules, consistent with ICPC-style contests:
1) You have 90 minutes to solve 3 problems in class.

Problems solved in class net 2 points.
2) However, you are not required or expected to solve ev-

ery problem in class! You may bring unsolved problems
back home and upsolve them as homework before the
due date. Every problem nets 1 point as homework.

3) As a rule of thumb, you need 4 points every week for
an A, and 2 points every week for a P over 12 sessions. 2
lowest performances are dropped when calculating the
grade.

4) You may bring your laptop or use the lab computer.
However, cellphones and the Internet are not allowed
other than submission.

5) Instead, you may bring a printed-out reference to help
you solve the problem. You must type the solution
yourself.

6) For educational purposes, we may ask you to present
your code in class.

7) To track your progress in the course, you are required
to fill in the solve information and your reflections in a
Google Sheets document. We will provide the relevant
template in class.

8) For team contest: One teammate is allowed to code no
more than one problem in class. You should discuss
and decide who codes what after reading the problems.
A solve in the team counts as 2 points for every team
member. (For teams of two, you may attempt the third
problem with anyone as long as the first two solves
are done by different people. To put it more elegantly
and generally, the difference of solves between team
members in contest should not be greater than one.)

9) For team contest: Homeworks (upsolving) are still
individual and no plagiarism is allowed. Only the coder
can use the partial solution code he/she writes in class
if there is one.

Problem Selection For the three problems every session:
1) Problem 1 reviews and examines the student’s knowl-

edge from CP1 and CP2. The problem’s solution in-
volves skills and techniques from these two prior
classes, with a focus on the observation skill (EO-1).

2) Problem 2 assesses the student’s understanding of the
current topic in CP3. The problem’s solution involves
techniques from the latest topic (EO-2).

3) Problem 3 assesses the student’s implementation abili-
ties. The problem involves extensive coding and debug-
ging and requires a mastery of these abilities from the
student (EO-3).

The order of the problems may be randomized.
Upsolving Trying to solve these problems during the con-
test session is not all there is to this course! In fact, what
you successfully do in the contest is no more than a practice
and review of topics you already understand. On the other
hand, what you failed to solve in the contest is a golden
opportunity to compare yourself with other students, iden-
tify your own weaknesses and do some catch-up. For this
reason, I ask you to write a very short reflection (around

8

10 words) on every problem in the Google Sheets docu-
ment, together with the solve information. The following
checklist may be helpful for you to reflect on your progress
on every problem after every contest.
Level 1. I solved the problem within the allotted time.

Congratulations! You have demonstrated your ca-
pabilities in the contest. If you feel that there is still
room to improve your efficiency, you are more than
welcome to utilize the advice below. Otherwise, feel
free to move on.

Level 2. I solved the problem after the contest.
A perfect student should be able to get 2 problems
every session. If you feel you are ever stuck for a
significant period in the contest for some reason,
feel free to check below on the reason you get
stuck for some advice. You can also drop in during
my office hours and we can walk through your
contest process to identify the ways to improve
your efficiency.

Level 3. I know how to solve the problem, but my code
runs into some bugs.
Debugging is often a painful process for many
people, including myself. You may want to try a
variety of debugging methods (i.e. static, dynamic,
stress test, etc.). You may find it helpful to write
down the exact bug (integer overflow, typo, logic
issues, etc.) in the reflection, as knowing what bug
happens most frequently in your code helps you to
speed up your debugging process significantly.
You can also drop in during any office hours if you
cannot find the bug in your code.

Level 4. I know how to solve the problem, but I don’t
know how to implement it.
Unfortunately, as we enter CP3, the complexity in
the code’s logic steadily increases, and you will
start to face what we call implementation-heavy
problems. These problems resemble what you will
face in your future software engineering jobs: not
so algorithmically complicated, but rather a bunch
of logic that you have to implement correctly. I
often find it helpful to take out a pen, think about
and write down the structure of the code. What
is the most concise way to implement the logic?
How many functions do I need to make? What is
the logic flow in each function? As I think through
these aspects, I gradually begin to grasp what I
need to code and become more comfortable to code
it.

Level 5. I know the related technique, but I don’t know
how to solve this specific problem.
As we encounter more and more techniques in CP2
and CP3, a common difficulty is to link the tech-
nique to the problems we are solving. In general,
I do not find it very helpful to get stuck thinking
about any problem for more than 1 hour if you
have absolutely no idea how to solve it. Instead,
after we go over the solution in the lecture, try to
ask yourself: How could I have thought the solution
myself? What is the observation I am missing here? In
other words, you need to identify a possible way
for you to come up with the solution yourself so

that you do not get stuck in future contests on a
similar problem.
If you find it difficult to conjure a possible way for
you to come up with the solution yourself, feel free
to talk to me after class or during office hours.

Level 6. I don’t know the related technique.
In a sense this is the easiest thing to fix: you
already understand what you don’t know! Fortu-
nately, there are a lot of online resources for every
technique we covered in CP1, CP2 and CP3. I
generally found Google to be reasonably helpful.
You may need to glance over a couple of differ-
ent blogs before you have a more comprehensive
understanding, but that is totally fine. You can
also talk to me after class or during office hours
and I can either explain or help you find relevant
resources.

Problem Setting (Extra Credit) Students may earn up
to 6 extra points by proposing and setting a competitive
programming problem for future uses.

• Students may work in teams of at most 3. Everyone
in the team is expected to have a similar workload.
Notably, everyone is expected to code a solution to
ensure accuracy.

• Students should use Polygon (https://polygon.code
forces.com) to develop the problem. The problem is
expected to be complete, with a statement, a checker,
a validator, tests, solutions (2+ AC and 1+ TLE, if
applicable), and a tutorial. Students should create a
problem and add the instructor to review the problem.

• Students should submit the draft of a statement by
Topic 3, the draft of a complete problem by Topic 6,
and a complete problem by Topic 9. The instructor will
review the drafts and provide feedback. For this reason,
late submissions may not be accepted.

• The problem might be used in the course or school
contests. For this reason we ask that you do not discuss
the problem with other people.

• The problem will be graded by the rubric in Table 3.

A.2 Grade
The following scale is used to assign a grade over 10 assess-
ment sessions, after dropping the 2 lowest performances
from a total of 12 sessions:

Grade A+ A A- B+ B B- C+ C

Point 45 40 38 35 30 28 25 20

C- (P) D+ (NP) D D- F

18 15 10 8 ≤ 7

Late Policy Every student is given three free late days in
total for upsolves to account for unexpected events. For
extraordinary circumstances, please contact the instructor.
In addition, 2 lowest performance sessions are dropped
when calculating the grade.
Attendance Since for contests, an unannounced absence
creates an unfair burden on the rest of the team and unnec-
essary stress on the logistics of the course, students absent
from contest sessions without being excused by the instruc-
tor will be given a 0 for that contest with no opportunities
for upsolve. For this course, arriving more than 10 minutes

https://polygon.codeforces.com
https://polygon.codeforces.com

9

TABLE 3
Rubric for problem setting.

Grade 2 pts 1 pts 0 pts

Difficulty The problem is of appropriate
or higher difficulty for CP3.

The problem is of appropriate
difficulty for CP1 or CP2.

The problem is trivial.

Completeness The problem is complete. The problem lacks enough solu-
tions to ensure accuracy or lacks
a tutorial.

The problem is not complete.

Clarity The statement and tutorial is
clear and easy to follow.

The statement or tutorial needs
clarification.

The statement or tutorial cannot
be understood.

late or leaving more than 10 minutes early without being
excused counts as missing the class. In the event of an
anticipated absence, inform the instructor of the situation
as far in advance as possible.
How to Succeed in this Course Below are a few tips that
might help you.

• Prepare for the stress. Solving problems in a strictly-
timed environment is a stressful event for everyone.
Unfortunately, this is a common occurrence in com-
petitive programming and interview exams. In general,
having more contest experience helps, so this course
employs multiple low-stake contest sessions with free
drops available to minimize stress. You may also find
participating in online contests on Codeforces and At-
Coder helps to build a rich competition experience,
as they provide some incentive (rating) but are also
generally low-stakes.

• Be an active thinker in the contest. As you approach
CP3 and beyond, you will start to find that imple-
mentation starts to become easier but coming up with
ideas for the problems remains difficult. To practice
solving the problems, you need to be efficient not only
in implementing a solution but also in coming up with
ideas, and the best way to practice is to think about the
contest problems in class actively instead of relying on
your teammates.

• Study and survey a wide range of sources for one
topic. For most topics in this class (and in competitive
programming in general), there are many different re-
sources online. The ability to search and study these
resources is essential to your success in competitive
programming and problem-solving, even outside of
this class. In general, do not be afraid to glance over
10 articles online and find the one that helps you
understand the topic more thoroughly. You will need
this skill once you graduate from the course and study
yourself.

A.2.1 Logistics
The following resources and platforms are used in this
course.
Helpful Resources None of the following resources are
required for the course. Nevertheless, they may help you
understand competitive programming and topics in the
class.

• Competitive Programming 4 by Halim, Halim, and Ef-
fendy

• Algorithms for Competitive Programming: https://cp-alg
orithms.com/index.html

• Codeforces Catalog: https://codeforces.com/catalog
Brightspace Announcements and grades are published on
Brightspace. Please check regularly for announcements that
you may have missed.
Codeforces Assessment sessions will be done on Code-
forces (https://codeforces.com/).

• You need to create an account on the platform if you do
not have one already and provide us with the account
name. You also need to join the Codeforces group for
this class. Sign-up details will be announced in class.

• For team-based contests, you need to create a team (ht
tps://codeforces.com/teams) with your teammates
added to the team before you register for the contest.

Google Sheets We use Google Sheets to help you track your
progress throughout the course. You are required to fill in
your progress and your team’s progress on Google Sheets.
Details will be announced in class.

A.2.2 Tentative Course Schedule
Topic (Tuesday) Contest (Thursday)

Topic 0: Introduction, Implementation Individual Contest
Topic 1: Geometry: Review, Half-plane In-
tersection, Adaptive Simpson

Team Contest

Topic 2: Combinatorics: Review, Linear Re-
currence

Individual Contest

Topic 3: Range Query: Review, Segment
Tree Hard

Team Contest

Topic 4: Monotonicity: DP Review, Opti-
mization

Individual Contest

Topic 5: Tree: Review, LCA, HLD Team Contest
Topic 6: Game Theory: SG Function, Search Individual Contest
Topic 7: Network Flow: Min Cut, Min Cost Team Contest
Topic 8: Fast Fourier Transform Individual Contest
Topic 9: String: KMP, AC Automata Team Contest
Topic 10: Offline: CDQ, Mo’s Algorithm Individual Contest
Topic 11: Final Contest Team Contest

https://cp-algorithms.com/index.html
https://cp-algorithms.com/index.html
https://codeforces.com/catalog
https://codeforces.com/
https://codeforces.com/teams
https://codeforces.com/teams

10

Appendix B
Sample Handout
We provide a sample handout for Topic 7: Network Flow: Min
Cut, Min Cost.

Learning Objectives
The students will be able to…
1) describe the max-flow network flow problem and the

min-cost network flow problem;
2) describe the max-flow min-cut theorem;
3) apply well-established algorithms (ISAP, Dinic, EK,

ZKW, etc.) to solve a network flow problem;
4) model programming problems (e.g. a matching prob-

lem) with network flow.

Sample Problems

Problem Name: Magic Potion
Link: https://vjudge.net/problem/Gym-101981I

Problem Name: Kejin Game
Link: https://vjudge.net/problem/UVALive-7264

Problem Name: Coding Contest
Link: https://vjudge.net/problem/HDU-5988

Problem Name: Hiring Employees
Link: https://dmoj.ca/problem/noi08p3

Magic Potion
There are 𝑛 heroes and 𝑚 monsters living on an island. The
monsters have become very vicious recently, so the heroes
have decided to reduce their numbers. However, the 𝑖-th
hero can only kill one monster from the set 𝑀𝑖. Joe, the
strategist, has 𝑘 bottles of magic potion, each of which can
buff one hero’s power, allowing him to kill one additional
monster. Since the potion is very powerful, a hero can only
take at most one bottle of potion.

Please help Joe determine the maximum number of
monsters that can be killed by the heroes if he uses the
optimal strategy.

Input
The first line contains three integers 𝑛, 𝑚, 𝑘 (1 ≤ 𝑛, 𝑚, 𝑘 ≤
500) — the number of heroes, the number of monsters, and
the number of bottles of potion.

Each of the next 𝑛 lines contains one integer 𝑡𝑖, the size
of 𝑀𝑖, followed by 𝑡𝑖 integers 𝑀𝑖,𝑗 (1 ≤ 𝑗 ≤ 𝑡𝑖), the indices
(1-based) of monsters that can be killed by the 𝑖-th hero
(1 ≤ 𝑡𝑖 ≤ 𝑚, 1 ≤ 𝑀𝑖,𝑗 ≤ 𝑚).

Output
Print the maximum number of monsters that can be killed
by the heroes.

Examples

Input
3 5 2
4 1 2 3 5
2 2 5
2 1 2

Output
4

Input
5 10 2
2 3 10
5 1 3 4 6 10
5 3 4 6 8 9
3 1 9 10
5 1 3 6 7 10

Output
7

Source
2018 ACM-ICPC Asia Nanjing Regional Programming Con-
test

https://vjudge.net/problem/Gym-101981I
https://vjudge.net/problem/UVALive-7264
https://vjudge.net/problem/HDU-5988
https://dmoj.ca/problem/noi08p3

11

Kejin Game
In recent years, many free-to-play games, referred to as Kejin
games, have emerged. These games are accessible without
charge, but specific items or characters require payment.
Examples include Love Live, Kankore, Puzzle & Dragon,
Touken Ranbu, and Kakusansei Million Arthur, all of which
have gained immense popularity and generate significant
revenue daily.

In a Kejin game, your character possesses a skill graph
that determines how skills can be acquired. This graph is a
directed acyclic graph where vertices represent skills, and
edges indicate dependencies: if there is an edge from skill
A to skill B, A is a prerequisite for B. In cases where skill
S has multiple dependencies, all must be acquired before
obtaining S. Furthermore, each edge in the graph is unique,
and cyclic dependencies are absent.

Acquiring skills typically involves time and effort, espe-
cially for advanced skills deeper in the graph. However,
as a player with resources to spare, you can choose to
pay money, denoted as “Ke,” to bypass certain restrictions.
Specifically, money can be used to remove edges from the
dependency graph or to acquire skills directly, ignoring
existing dependencies.

Given the constraints of time and money, you wish
to optimize the balance between them. Each action, be it
acquiring a skill through conventional means, removing an
edge, or directly purchasing a skill, incurs a cost measured
in units of “TA.” You seek to determine the minimal cost
required to acquire a desired skill S, starting without any
initial skills.

Input
The input starts with an integer indicating the number of
test cases (no more than 10). Each test case consists of:

• The first line containing three integers 𝑁, 𝑀, and 𝑆,
where 𝑁 is the number of vertices (skills), 𝑀 is the
number of arcs (dependencies), and 𝑆 is the index of
the target skill (1-based index).

• 𝑀 subsequent lines each contain three integers 𝐴, 𝐵,
and 𝐶, where there is an arc from skill 𝐴 to skill 𝐵 with
𝐶 TAs cost to remove the dependency.

• A line with 𝑁 integers representing the cost to acquire
each skill through normal means.

• Another line with 𝑁 integers representing the cost to
directly acquire each skill via payment, bypassing any
dependencies.

The costs for acquiring skills or removing dependencies
range up to 1, 000, 000.

Output
For each test case, output a single line containing the mini-
mal cost to acquire the specified skill 𝑆.

Examples
Input
2
5 5 5
1 2 5
1 3 5
2 4 8

4 5 10
3 5 15
3 5 7 9 11
100 100 100 200 200
5 5 5
1 2 5
1 3 5
2 4 8
4 5 10
3 5 15
3 5 7 9 11
5 5 5 50 50

Output
31
26

Source
2015 ACM-ICPC Asia Beijing Regional Contest

12

Coding Contest
A coding contest will be held in this university, in a huge
playground. The whole playground will be divided into 𝑁
blocks, and there will be 𝑀 directed paths linking these
blocks. The 𝑖-th path goes from the 𝑢𝑖-th block to the 𝑣𝑖-
th block. Your task is to solve the lunch issue. According to
the arrangement, there are 𝑠𝑖 competitors in the 𝑖-th block.
Limited to the size of table, 𝑏𝑖 bags of lunch including
breads, sausages, and milk would be put in the 𝑖-th block.
As a result, some competitors need to move to another block
to access lunch.

However, the playground is temporary, and as a result
there would be many wires on the path. For the 𝑖-th path,
the wires have been stabilized at first and the first competitor
who walks through it would not break the wires. Since then,
however, when a person goes through the 𝑖-th path, there
is a chance of 𝑝𝑖 to touch the wires and affect the whole
network. Moreover, to protect these wires, no more than 𝑐𝑖
competitors are allowed to walk through the 𝑖-th path. Now
you need to find a way for all competitors to get their lunch,
and minimize the possibility of network crashing.

Input
The first line of input contains an integer 𝑡 which is the
number of test cases. Then 𝑡 test cases follow. For each test
case, the first line consists of two integers 𝑁 (𝑁 ≤ 100) and
𝑀 (𝑀 ≤ 5000). Each of the next 𝑁 lines contains two integers
𝑠𝑖 and 𝑏𝑖 (𝑠𝑖, 𝑏𝑖 ≤ 200). Each of the next 𝑀 lines contains three
integers 𝑢𝑖, 𝑣𝑖, and 𝑐𝑖 (𝑐𝑖 ≤ 100) and a floating-point number
𝑝𝑖 (0 < 𝑝𝑖 < 1). It is guaranteed that there is at least one way
to let every competitor have lunch.

Output
For each test case, output the minimum possibility that the
network would break down. Round it to 2 digits.

Examples

Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5

Output
0.50

Source
2016 ACM-ICPC Asia Qingdao Regional Contest

Hiring Employees
BuBu has stepped into a challenging role as the head of
the human resources department for a subsidiary of the
Olympic committee. His task is to recruit a team of employ-
ees for a new Olympic project. The project spans 𝑁 days,
with day 𝑖 requiring at least 𝐴𝑖 employees.

The company has 𝑀 types of employees available for
hire. Employees of type 𝑖 work from day 𝑆𝑖 to day 𝑇𝑖 and
require a total salary of 𝐶𝑖 dollars. BuBu’s goal is to minimize
the total cost of hiring enough employees for all necessary
days.

Input
The first line of input contains two integers 𝑁 and 𝑀,
where 𝑁 is the number of days and 𝑀 is the number of
employee types. The second line has 𝑁 nonnegative integers,
representing the minimum number of employees required
each day. The next 𝑀 lines each contain three integers 𝑆𝑖, 𝑇𝑖,
and 𝐶𝑖, describing the availability and cost of each type of
employee.

For 100% of the test cases, 1 ≤ 𝑁 ≤ 1000, and 1 ≤ 𝑀 ≤
10000. Also, other values in the data will not exceed 231 − 1.

Output
Output one integer, the cost of the optimal hiring strategy.

Examples

Input
3 3
2 3 4
1 2 2
2 3 5
3 3 2

Output
14

Source
2008 China National Olympiad in Informatics

13

Appendix C
Sample Contest
We provide a sample contest for Topic 7: Network Flow: Min
Cut, Min Cost.

Parencedence!
Parencedence is a brand new two-player game that is sweep-
ing the country (that country happens to be Liechtenstein,
but no matter). The game is played as follows: a computer
produces an arithmetic expression made up of integer val-
ues and the binary operators +, - and *. There are no
parentheses in the expression. If Player 1 goes first, he/she
can put parentheses around any one operator and its two
operands; the parenthesized expression is evaluated, and
its value is used in its place. Player 2 then does the same,
and the game proceeds accordingly, Player 1 and Player 2
alternating turns. Player 1’s object is to maximize the final
value, while Player 2’s object is to minimize it. A sample
round might go as follows:

• Initial expression: 3 − 6 ∗ 4 − 7 + 12
• Player 1’s move: 3 − 6 ∗ (4 − 7) + 12 → 3 − 6 ∗ −3 + 12
• Player 2’s move: (3 − 6) ∗ −3 + 12 → −3 ∗ −3 + 12
• Player 1’s move: (−3 ∗ −3) + 12 → 9 + 12
• Player 2’s move: (9 + 12) → 21
A game of Parencedence is played in two rounds, each

using the same initial unparenthesized expression: in the
first round, Player 1 goes first, and in the second, Player 2
goes first (Player 1 is always trying to maximize the result
and Player 2 is always trying to minimize the result in both
rounds, regardless of who goes first). Let 𝑟1 be the result
of the first round and 𝑟2 the result of the second round.
If 𝑟1 > −𝑟2, then Player 1 wins; if 𝑟1 < −𝑟2, then Player
2 wins; otherwise the game ends in a tie. Your job is to
write a program to determine the final result, assuming both
players play as well as possible.

Input
The first line of the input file contains an integer 𝑛 indicating
the number of test cases. The test cases follow, one per line,
each consisting of a positive integer 𝑚 ≤ 9 followed by an
arithmetic expression. The value of 𝑚 indicates the number
of binary operators in the arithmetic expression. The only
operators used will be +, -, and *. The - operator can
appear as both a unary and a binary operator. All binary
operators will be surrounded by a single space on each side.
There will be no space after any unary -. No combination
of parentheses will ever result in an integer overflow or
underflow.

Output
For each test case, output the case number followed by three
lines. The first contains the first set of operands and operator
to be parenthesized in round 1 (when Player 1 goes first)
and 𝑟1. The second line contains the analogous output for
round 2. The third line contains either the phrase “Player 1
wins”, “Player 2 wins” or “Tie” depending on the values of
𝑟1 and 𝑟2. In the first two output lines, if there is a choice
between which operator should be parenthesized first, use
the one which comes earliest in the original expression.
Follow the format used in the examples.

Examples
Input
2
4 3 - 6 * 4 - 7 + 12
2 45 - -67 - 3

14

Output
Case 1:
Player 1 (7+12) leads to -2
Player 2 (3-6) leads to -27
Player 2 wins
Case 2:
Player 1 (-67-3) leads to 115
Player 2 (45--67) leads to 109
Player 1 wins

Source
2012-2013 ACM-ICPC East Central North America Regional
Contest

Stampede!
You have an 𝑛 × 𝑛 game board. Some squares contain
obstacles, except the left- and right-most columns which
are obstacle-free. The left-most column is filled with your
𝑛 pieces, 1 per row. Your goal is to move all your pieces
to the right-most column as quickly as possible. In a given
turn, you can move each piece N, S, E, or W one space, or
leave that piece in place. A piece cannot move onto a square
containing an obstacle, nor may two pieces move to the same
square on the same turn. All pieces move simultaneously, so
one may move to a location currently occupied by another
piece so long as that piece itself moves elsewhere at the same
time.

Given 𝑛 and the obstacles, determine the fewest number
of turns needed to get all your pieces to the right-hand side
of the board.

Input
Each test case starts with a positive integer 𝑛 indicating the
size of the game board, with 𝑛 ≤ 25. Following this will
be 𝑛 lines containing 𝑛 characters each. If the 𝑗𝑡ℎ character
in the 𝑖𝑡ℎ line is an ‘X’, then there is an obstacle in board
location 𝑖, 𝑗; otherwise this character will be a ‘.’ indicating no
obstacle. There will never be an obstacle in the 0𝑡ℎ or (𝑛−1)𝑠𝑡

column and there will always be at least one obstacle-free
path between these two columns. A line containing a single
0 will terminate input.

Output
For each test case output the minimum number of turns to
move all the pieces from the left side of the board to the
right side.

Examples

Input
5
.....
.X...
...X.
..X..
.....
5
.X...
.X...
.X...
.XXX.
.....
0

Output
Case 1: 6
Case 2: 8

Source
2013-2014 ACM-ICPC East Central North America Regional
Contest

15

Machine Programming
One remarkable day company “X” received 𝑘 machines.
And they were not simple machines, they were mechanical
programmers! This was the last unsuccessful step before
switching to android programmers, but that’s another story.

The company has now 𝑛 tasks, for each of them we
know the start time of its execution 𝑠𝑖, the duration of its
execution 𝑡𝑖, and the company profit from its completion 𝑐𝑖.
Any machine can perform any task, exactly one at a time. If
a machine has started to perform the task, it is busy at all
moments of time from 𝑠𝑖 to 𝑠𝑖 +𝑡𝑖 −1, inclusive, and it cannot
switch to another task.

You are required to select a set of tasks which can
be done with these 𝑘 machines, and which will bring the
maximum total profit.

Input
The first line contains two integer numbers 𝑛 and 𝑘 (1 ≤ 𝑛 ≤
1000, 1 ≤ 𝑘 ≤ 50) — the numbers of tasks and machines,
correspondingly.

The next 𝑛 lines contain space-separated groups of three
integers 𝑠𝑖, 𝑡𝑖, 𝑐𝑖 (1 ≤ 𝑠𝑖, 𝑡𝑖 ≤ 109, 1 ≤ 𝑐𝑖 ≤ 106), 𝑠𝑖 is the time
when they start executing the 𝑖-th task, 𝑡𝑖 is the duration of
the 𝑖-th task, and 𝑐𝑖 is the profit of its execution.

Output
Print 𝑛 integers 𝑥1, 𝑥2, … , 𝑥𝑛. Number 𝑥𝑖 should equal 1, if
task 𝑖 should be completed, and otherwise it should equal 0.

If there are several optimal solutions, print any of them.

Examples

Input
3 1
2 7 5
1 3 3
4 1 3

Output
0 1 1

Input
5 2
1 5 4
1 4 5
1 3 2
4 1 2
5 6 1

Output
1 1 0 0 1

Source
VK Cup 2012 Round 3

	Introduction
	Organization of the Course
	Course Design
	Content
	Enduring Outcomes
	Important-to-Know & Supplemental Outcomes

	Assessment
	Learning Objectives
	Performance Task — Contests
	Supplemental Activities

	Pedagogy
	Course Schedule
	Lesson Plan
	Cooperative Learning
	Use of Code Reference
	Difficult Concepts

	Execution of the Course
	Future Improvements
	Conclusion
	References
	Appendix A: Sample Syllabus
	Course Description
	Learning Outcomes & Assessment

	Grade
	Logistics
	Tentative Course Schedule

	Appendix B: Sample Handout
	Appendix C: Sample Contest

