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Abstract—Competitive programming (CP) contests are often treated
as interchangeable proxies for algorithmic skill, yet the extent to which
results at lower contest tiers anticipate performance at higher tiers, and
how closely any tier resembles the ubiquitous online-contest circuit,
remains unclear. We analyze ten years (2015–2024) of International
Collegiate Programming Contest (ICPC) standings, comprising five long-
running superregional championships (Africa & Arab, Asia East, Asia
West, North America, and Northern Eurasia), associated local regionals
of North America and Northern Eurasia, and the World Finals. For 366
World Finalist teams (2021–2024) we augment the dataset with pre-
contest Codeforces ratings. Pairwise rank alignment is measured with
Kendall’s 𝜏.

Overall, superregional ranks predict World Final ranks only mod-
erately (weighted 𝜏 = 0.407), but regional-to-superregional consis-
tency varies widely: Northern Eurasia exhibits the strongest alignment
(𝜏 = 0.521) while Asia West exhibits the weakest (𝜏 = 0.188). Internal
consistency within a region can exceed its predictive value for Worlds —
e.g., Northern Eurasia and North America regionals vs. superregionals
(𝜏 = 0.666 and 𝜏 = 0.577, respectively). Codeforces ratings correlate
more strongly with World Final results (𝜏 = 0.596) than any single ICPC
tier, suggesting that high-frequency online contests capture decisive skill
factors that many superregional sets miss.

We argue that contest organizers can improve both fairness and
pedagogical value by aligning problem style and selection rules with the
formats that demonstrably differentiate teams, in particular the Northern-
Eurasian model and well-curated online rounds. All data, scripts, and
additional analyses are publicly released to facilitate replication and
further study.

Index Terms—Competitive programming, International Collegiate Pro-
gramming Contest (ICPC), problem style, rank correlation (Kendall’s
tau), performance consistency, Codeforces rating, contest design, com-
puter science education

1 Introduction
Competitive programming (CP) has become widely recog-
nized as an effective educational tool in computer science,
primarily for its role in enhancing students’ problem-solving
skills, computational thinking, and algorithmic proficiency.
Empirical studies consistently highlight CP’s educational

benefits, such as improved student proactivity, reduced per-
ceived difficulty of programming concepts, and increased
retention rates in introductory programming courses [1],
[4]. Additionally, programming contests promote indepen-
dent learning, stimulate innovative thinking, and actively
engage students in complex computational problem-solving
[27]. Garcia and Aguirre (2014) provide further empiri-
cal support by demonstrating measurable skill progression
through sustained participation in competitive program-
ming [8]. Finally, Yuen et al. (2023) also emphasize CP’s
practical educational impact, noting that contests stimulate
student interest and enhance independent learning, inno-
vative thinking, and problem-solving skills, which benefits
student employability and preparedness for advanced com-
putational challenges [35].

Several educational frameworks offer robust theoretical
justifications for incorporating CP into curricula. From a
constructivist learning theory perspective, CP facilitates ac-
tive learning through iterative experimentation, rapid feed-
back, and collaborative problem-solving experiences [23],
[34]. Competitive learning frameworks further advocate for
CP’s structured competitive interactions, effectively sup-
porting individualized learning alongside cooperative team
dynamics [4], [13], [17], [21]. Motivational theories, such as
Self-Determination Theory, help illuminate how CP contests
intrinsically motivate students by meeting psychological
needs for autonomy, competence, and relatedness, partic-
ularly when combined with gamification elements [10],
[28]. Furthermore, Gonzalez-Escribano et al. (2019) illus-
trate how competitive environments can be intentionally
structured to encourage collaborative behaviors, creating
a balanced educational environment that leverages both
competition and cooperation [9]. For further review of
competitive programming and its place in computer science
education, please refer to [15], [35].

Practically, there have been several studies on effective
teaching of and participation in CP courses and contests.
Mascio et al. study (further) gamification of CP through
awarding badges and providing a tailored “next problem”
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recommendation system [6]. The tool they created, Oii-web,
nearly doubled participation in the CP contest Olympiads in
Informatics (OII) for secondary school students in Italy [5].
In a similar vein, others have studied course design with
some experience reports showing increased engagement
and academic student success [20], [16], [7], provided con-
test strategy guides for participation in CP contests [2], [18],
[32], and have shown that introducing CP-style assignments
and tools into traditional courses, such as a CS1 course
taught in Haskell, increases amount of programming done
by students as well as students’ diligence, rigor, and joy in
programming [29].

Despite this substantial empirical evidence and strong
theoretical support for CP as a subset of competitive learn-
ing for computer science [30], there remains a gap in un-
derstanding how the structure and design of competitive
programming events influence educational outcomes and
student performance. Some studies have analyzed trends in
participation and provided recommendations for increasing
participation in North American superregional contests [3],
but analysis of structural differences between contests has
not been explored. Specifically, preeminent contests like
the International Collegiate Programming Contest (ICPC)
exhibit substantial variability in superregional contest rules
and qualifications, problem topics, and problem difficulties,
yet the implications of these structural differences have not
been thoroughly explored. Moreover, educators and orga-
nizers frequently rely on anecdotal evidence, experience,
and intuition rather than empirical insights when designing
and adapting CP contests.

This study seeks to shed some light on these issues by
empirically examining team performance consistency across
various ICPC contests. Rather than focusing explicitly on
detailed problem-setting practices — which remain opaque
in most cases — we analyze correlations among perfor-
mance metrics at different competitive levels. Additionally,
we investigate the predictive validity of online competitive
programming ratings, such as those from platforms like
Codeforces, hypothesizing that their frequent and diverse
contest formats provide reliable indicators of competitor
skill and potential contest outcomes.

This research is guided by three primary research ques-
tions:
RQ1 Does team performance consistency differ significantly

among ICPC superregional contests?
RQ2 How accurately do online competitive programming

ratings predict ICPC contest outcomes, and do these
ratings align differently with particular superregional
contests?

RQ3 What insights can an analysis of performance consis-
tency provide to help educators and contest organizers
improve the design and effectiveness of competitive
programming events?

By investigating these RQs, this study aims to inform
evidence-based improvements in contest design, enhancing
the alignment of competitive programming events with
educational theories and practical learning outcomes and
ultimately promoting more effective educational practices
in computer science education.

1.1 ICPC Overview
The International Collegiate Programming Contest (ICPC)
is an annual, multi-tiered, worldwide, collegiate competitive
programming competition. It is generally regarded as the
oldest (1970) and most prestigious programming contest in
the world. In this contest format, universities send teams
of three students to compete, each of which is tasked to
solve 10–13 algorithmic problems within five hours under
the restraints of one computer per team, no internet access,
and one 25-page document of reference material. A brief,
readable history of ICPC can be found in [14]. A much more
detailed one can be found on Wikipedia1.

ICPC contests are divided into multiple levels. At the
top level, the annual World Finals (WF) host the most
competitive teams from around the world to compete in
one final contest. The lower levels are divided into eight
regions: Africa and Arab, Asia East, Asia Pacific, Asia West,
Europe, Latin America, North America, and Northern Eura-
sia. World Finals chooses a number of teams that can be
sent from each region. Each region then sets its own rules
for promoting competitive teams from superregional finals
to World Finals. We give an overview of the structure in
Figure 1.

1.2 ICPC Superregional Structure and Qualifications
We provide a concise overview of each region’s structure
and selection of World Finals teams as of Spring 2025. Using
this information, we select 2 regions to analyze and com-
pare regional-to-superregional consistencies in Sections 3.3
and 3.4: the North America and Northern Eurasia regions.
Africa & Arab (ACPC)

• WF qualification: Only through the Africa & Arab Col-
legiate Programming Championship (ACPC); no direct
promotion from country-level regionals.

• ACPC entry: One university-level local contest → one
country-level regional → ACPC. Country quotas are set
annually by ACPC staff, primarily by historical partici-
pation.

• Judging: ACPC Scientific Committee invites experi-
enced coaches, ex-contestants, prior judges, and pro-
fessionals familiar with ICPC; selection is usually based
on recommendations and past involvement.

Asia East (AECF)
• WF qualification: The winning teams of every invita-

tional regional and the top teams at the East Continent
Final advance to the World Finals; the East Continent
Final host university also receives an automatic slot.

• East Continent Final entry: Invitational. Slots are
awarded to regional medalists, regional host schools,
universities that reached the World Finals in the pre-
vious three years, and other schools selected by ICPC
Beijing Headquarter [11].

• Judging: Each regional or superregional host recruits its
own authors and judges; commercial problem-setting
services may be contracted [31].

Asia Pacific (APAC)

1. https://en.wikipedia.org/wiki/International_Collegiate_Program
ming_Contest

https://en.wikipedia.org/wiki/International_Collegiate_Programming_Contest
https://en.wikipedia.org/wiki/International_Collegiate_Programming_Contest
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World Level

ICPC World Finals is the most prestigious collegiate
competitive programming contest at the world level.

Superregional Level

Each of the eight regions set its own rule to
promote competitive teams to World Finals. For
example, North America hosts one superregional
championship and advances the top teams,
while Europe hosted four (Central, Southeastern,
Southwestern, Northwestern) before 2022.

Regional Level

Regionals represent the local contests that school
teams attend at the lowest level.

World Finals

North America
(Championship)

Europe
(4 Superregionals) …

10 regionals 20+ regionals

Fig. 1. Hierarchy of ICPC contests.

• WF qualification: (2024-25 cycle2) Each APAC regional
winner (after removing South Pacific and other super-
regions) earns an automatic World Finals slot. If the
same university wins multiple regionals, it may ad-
vance only one team, chosen by the school or via the
Championship (rules B1-B3). Remaining Asia-Pacific
slots are filled by the highest-ranked universities in the
Asia Pacific Championship after filters F1(1)-F1(2).

• Championship entry:
– Automatic invites - all regional winners (D1) and the

top two teams from the South Pacific Independent
Regional (D2).

– Ranked list - the remaining slots come from a merged
cross-regional list ordered by (𝑅 − 1)/𝑆 after filters
D3(1)-D3(5); capped at three teams per university,
guaranteeing at least one team per APAC country,
plus up to one wildcard selected by the director
(D4(2-5), D5).

– Each team may compete in at most two regionals per
season (A1).

• Judging: Each regional nominates scientific committee
members; nominees elect a Chief Judge (last two cycles:
Jonathan I. Gunawan, SGP). Final panel spans 6-8 Asia-
Pacific countries.

Latin America (LAC)
• WF qualification: Six regional winners + next best

overall teams at the Latin-America Championship (Pro-
gramadores de América). No direct WF slots from the
first-stage regional.

• Championship entry: Fixed regional quotas, plus in-
clusivity extras (female-only teams, countries otherwise
unrepresented). Slots are earned only via the single
synchronized first-stage contest [19].

• Judging: Open call for problem proposals; Latin Amer-
ica Chief Judge chooses judges and setters to form a
balanced panel.

North America (NAC)
• WF qualification: Top 𝑁(≈ 17) teams from the North

America Championship (NAC), one per university.
• NAC entry: Eleven regional contests; 50 teams advance

from regionals, each regional receives a quota propor-

2. https://icpc.iisf.or.jp/asia-pacific/2024-2025-cycle/

tional to historical strength and participation. Only the
highest-ranked team per school advances.

• Judging: NAC Chief and Deputy Judges invite problem
setters and judges from across the region.

Northern Eurasia (NEF)
• WF qualification: Top 𝑁(≈ 16) teams from the North-

ern Eurasia Finals (NEF), one per university; extra host-
country slots possible.

• NEF entry: Seventeen regional contests receive dynamic
quotas computed by a published formula3 (affected by
NEF workstation limit, past performance, number of
teams participating in first rounds, etc.).

• Judging: Mailing-list call to an approved pool of former
judges/authors; Chief Judge curates the final problem
set and adds people to the listserv.

Europe (EUC)
• Details pending from regional contacts4. Provisional note:
2024 introduced a single Europe Championship fed by four
long-standing superregionals (NW, SE, SW, Central).

Asia West (AWCF)
• Details pending from regional contacts.

1.3 Population Sample
Five of the ICPC regions have consistently named super-
regional championships that promote their teams to World
Finals that extend beyond one year. We list them in Table 1,
and use them as the dataset for our comparison against the
World Finals and Codeforces. Northern Eurasia was listed
as Northeastern Europe Regional Contest from 2015–2017
but functionally acted as its own region in structure and
promotion to worlds, so 2015–2017 data is included in the
analysis.

Additionally, as the Europe Championship was added in
2024, and the regionals (Northwest, Southeast, Southwest,
Central) have been organized as effectively superregionals
pre-2024 (similar to Northern Eurasia pre-2018), we added
comparisons between those regionals and World Finals and
also included the Europe Championship for reference. That

3. https://nerc.itmo.ru/information/selection-rules.html
4. If received, this paper will be updated with these two regions or

removed altogether if not available.

https://icpc.iisf.or.jp/asia-pacific/2024-2025-cycle/
https://nerc.itmo.ru/information/selection-rules.html
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TABLE 1
ICPC regions with historically trackable superregional championships. See Section 1.3 for details.

Region Superregional Championship

Africa and Arab Africa & Arab Collegiate Programming Championship
Asia East Asia East Continent Final Contest
Asia West Asia West Continent Final Contest

North America North America Championship
Northern Eurasia Northern Eurasia Finals or Northeastern Europe Regional Contest

Europe Europe Championship
Southeastern Europe Southeastern Europe Regional Contest
Southwestern Europe Southwestern Europe Regional Contest
Northwestern Europe Northwestern Europe Regional Contest

Central Europe Central Europe Regional Contest

data is kept separate in each table it falls under to separate
it from analysis of current superregionals with more than 1
year.

For the sake of clarity, when this article refers to “su-
perregionals,” it is referring to the championships of the
5 regions in Table 1. To refer to “local regional” contests,
we use the term “regional.” According to ICPC naming
conventions, both are labeled “regional contest” or “regional
championship” or some variant of that phrasing, so we
separate them for clarity.

2 Methodology
To study the performance consistency across two contests,
we propose a methodology based on rank correlation anal-
ysis using Kendall’s tau coefficient.

For a specific pair of contests, we take the following
steps.
1) We first find all pairs of teams that participated in both

contests in the same year.
2) We then identify these pairs as being concordant (that

is, one team performs better than the other in both
contests) or discordant.

3) Finally, we use the formula for Kendall’s tau coefficient

𝜏 =
(# of concordant pairs) − (# of discordant pairs)

(# of pairs) .

to compute the rank correlation coefficient.
We note that 𝑅2 is not directly applicable to analyzing the

relationship between ranks. On the other hand, Kendall’s
Tau rank correlation coefficient is used to assess the strength
and direction of monotonic relationships between ranked
variables, and is recorded to be more reliable and inter-
pretable than Spearman’s rank correlation coefficient, de-
spite being more expensive to compute [22].

Following the cutoffs used in [33], we define the inter-
pretations for values of 𝜏 in Table 2.

2.1 World Finals and Superregionals Data Collection
We obtained the rankings of the teams from the ICPC
official website [12]. Collecting data from superregional
contests posed several challenges due to inconsistencies in
reporting formats and the decentralized nature of result
dissemination across different superregional websites. In
particular, each regional is responsible for collecting and

TABLE 2
Interpretations for the magnitude of the Kendall Tau value.

Interpretation begins at the listed value, e.g., Very Strong is ≥ 0.71

Strength Kendall

Negligible 0.00
Weak 0.06

Moderate 0.26
Strong 0.49

Very Strong ≥ 0.71

publishing its own contest results, and each region is re-
sponsible for the management of regionals, qualification to
the superregional contest(s), and overall structure of the
region (see Section 1.2). Due to this, many regional results
were inaccessible and incomparable to superregional results.
For example, in Asia East, all teams are eligible to attend all
regionals, which makes correlational data non-independent
and more inconsistent. In Sections 3.3 and 3.4, we show
results for North America regionals and Northern Eurasia
regionals, respectively.

2.2 Codeforces Data Collection
We obtained the Codeforces5 rating of teams going to World
Finals 2021–2024 from various statistics pages on Code-
forces [24], [25], [26] that captured the teams’ average rating
before the contest. We compare the online rating in these
four years to other ICPC contests where the teams overlap
to examine the correlation between online contests and ICPC
performance. We did not include the European contests as
they did not contain much, if any, overlap from 2021–2024
with Codeforces.

3 Results
The correlations presented in this section measure if the
relative performance of teams from the same superregion
in World Finals was the same as their superregional cham-
pionship. In short, we analyze performance consistency
between superregionals and World Finals. We present sim-
ilar analysis comparing superregionals and World Finals to
Codeforces as well as comparing superregionals to regionals
for North America and Northern Eurasia.

5. https://codeforces.com/

https://codeforces.com/
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We limit our analysis to the last 10 years (2015–2024) as
data beyond the last decade is less likely to be impactful
to present-day decisions. For those interested, all code and
results are publicly available on Github at https://gith
ub.com/zhtluo/cp-ranking6. Adding regions, years, and
superregionals is a trivial task if one follows the readme.md
instructions.

3.1 Superregional vs. Final
We gathered the available team rankings from both ICPC
World Finals and regions that host superregional finals. The
exact range of data is shown in Table 3. We note that Asia
East is mostly composed of regionals in China (and North
Korea), and therefore did not have superregional contests
during COVID (affecting data collection in 2023 and 2024).
The Asia East Continent Finals began in 2018, Asia West in
20207, and Asia Pacific in 2024. The North America Cham-
pionship began in 2020. The Europe Championship began
in 2024, so that analysis should be read with less weight
(only included as a comparison to its regionals in prior
years). Northern Eurasia on the official website, icpc.global,
does not have records listed on the superregional results
contest finder from 2018–2020, but are available under the
standard “Northern-Eurasia” tag. See Section 1.3 for more
on excluded regions.

TABLE 3
Data range of World Finals and superregional finals used in this study.
We used data publicly available on the official website in the past 10
years. For example, there is 10 years of World Finals data available.

Name Years

World Finals 2015–2024
Africa & Arab Collegiate Programming Championship 2015–2024

Asia East Continent Final Contest 2018–2022
Asia West Continent Final Contest 2020, 2023–2024
North America Championship 2020–2024

Northern Eurasia Finals 2015–2024

Europe Championship 2024
Southeastern Europe Regional Contest 2017–2023
Southwestern Europe Regional Contest 2015–2023
Northwestern Europe Regional Contest 2015–2023

Central Europe Regional Contest 2015–2023

We compute the number of pairs of team overlaps and
the respective tau coefficient and list them in Table 4.

We found that overall, team performance in superre-
gional is moderately correlated with team performance in
World Finals with coefficient 𝜏 = 0.407 (not including the
European regions). While most contests hover around the
average, team performance in Northern Eurasia gives a par-
ticularly strong correlation at 𝜏 = 0.521. Moreover, we found
that the European regions were also moderately correlated
at 𝜏 = 0.369 as a whole. Interestingly, Southwestern Europe
regionals were not correlated and Central Europe regionals
were strongly correlated, indicating a wide range of contest
variety across Europe and suggesting further studies into
this dynamic superregion.

6. We only request our original work and this paper get referenced
when using this repository.

7. Prior to 2020, Asia West did not have superregionals and the
ICPC tag used for the Asia West superregionals through present day
(“ICPCKolkataKanpur”) was used for the Kolkata-Kanpur regionals.
Additionally, the Asia West Continent Final data is missing from the
official website for the 2021 and 2022 contests, so that data is excluded.

TABLE 4
Rank correlation between superregional and World Finals. We include
the number of pairs of teams we used in the calculation and the rank

correlation coefficient, rounded to .001. European contests kept
separate due to recent (2024) formation of Europe Championship (see

Section 1.3).

Name # Coeff.

Africa & Arab Collegiate Programming Championship 563 0.410
Asia East Continent Final Contest 453 0.395
Asia West Continent Final Contest 239 0.188
North America Championship 587 0.281

Northern Eurasia Finals 1131 0.521
Weighted Average - 0.407

Europe Championship 153 0.346
Central Europe Regional Contest 52 0.577

Southeastern Europe Regional Contest 52 0.385
Southwestern Europe Regional Contest 38 0.053
Northwestern Europe Regional Contest 61 0.443

Weighted Average (Incl. EUC) - 0.369

3.2 Online Rating vs. ICPC
We also measured the rank correlation between teams’
average Codeforces online rating and their ranking in su-
perregional finals and World Finals in Table 5.

TABLE 5
Rank correlation between Codeforces and ICPC contests. We include
the number of pairs of teams we used in the calculation and the rank

correlation coefficient, rounded to .001. We use the overlapping part of
Codeforces rating data from 2021–2024 and the superregional data

from the table listed in Table 3.

Name # Coeff.

World Finals 16596 0.596
Africa & Arab Collegiate Programming Championship 130 0.415

Asia East Continent Final Contest 106 0.226
Asia West Continent Final Contest 183 0.344
North America Championship 268 0.396

Northern Eurasia Finals 365 0.545

We found that Codeforces ratings correlate strongly with
World Finals (𝜏 = 0.596), compared to the weighted average
of superregional contests with WFs (𝜏 = 0.407). Northern
Eurasia Finals (𝜏 = 0.545) also leads other contests by a
significant margin.

3.3 North America Superregionals
Similarly, we performed comparison between different
North America regionals and the North America Champi-
onship. We list the data source in Table 6 and the result
in Table 7. The table shows 𝜏 with the number of pairwise
comparisons used in its calculation. For example, compar-
ing to North American Championships for 2020–2024, East
Central had {5, 10, 5, 5, 6} teams in each year (only the
top team from each school is used, as usually only one per
school is allowed to attend superregional championships),
fromwhich we take (𝑛

2) for each year, yielding {10, 45, 10, 10,
15} pairs, for a total of 90 pairs. As expected, only teams who
attended the superregional championships were counted.

Based on the result, we observe that team performance
is on average much more consistent in North America (𝜏 =
0.577) than between North America and World Finals (𝜏 =
0.281).

https://github.com/zhtluo/cp-ranking
https://github.com/zhtluo/cp-ranking
icpc.global
https://icpc.global/regionals/results/2020
https://icpc.global/regionals/results/2020
https://icpc.global/regionals/finder/Northern-Eurasia-2018
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TABLE 6
Data range of North America regionals and the North America

Championship (superregional contest). We used data publicly available
on the official website in the past 10 years. Mid Atlantic and

Northeastern are both missing data from 2024 on the website, so those
two points are excluded.

Name Years

North America Championship 2020–2024
East Central 2015–2024
Mid Atlantic 2015–2023
Mid Central 2015–2024
North Central 2015–2024

Pacific Northwest 2015–2024
Rocky Mountain 2015–2024

Southeast 2015–2024
South Central 2015–2024

Southern California 2015–2024
Greater New York 2015–2024

Northeastern 2015–2023

TABLE 7
Rank correlation between North America regionals and superregional.

We include the number of pairs of teams we used in the calculation and
the rank correlation coefficient, rounded to .001. Championship data is

not available before 2020, so these correlations are measured over
data from 2020–2024.

Name # Coefficient

East Central 90 0.556
Mid Atlantic 56 0.786
Mid Central 42 0.667
North Central 52 0.692

Pacific Northwest 55 0.491
Rocky Mountain 22 0.636
South Central 30 0.467

Southern California 32 0.438
Southeast 35 0.771

Greater New York 46 0.174
Northeastern 41 0.659

Weighted Average - 0.577

3.4 Northern Eurasia Superregionals
Similarly, we performed comparison between different
Northern Eurasia regionals and the Northern Eurasia Finals.
We list the data source in Table 8 and the result in Table 9.
There were data gaps around the 2021–2022 Northern Eura-
sia finals due to some regionals not sending any teams to
the Northern Eurasia superregional finals8.

Furthermore, due to data inconsistency with the official
website, at most 6 regions are missing data during the 2018-
19 and 2020-21 years. The first was right after Northern
Eurasia became its own Region (in 2018), the second was the
start of the COVID-19 pandemic, although the contests still
happened. This data is excluded from our analysis, although
the strength and consistency of Northern Eurasia regions
through the other 8 years implies a similar result for the
missing data.

Based on the result, we observe that team performance is
on average more consistent in Northern Eurasia (𝜏 = 0.666)
than between Northern Eurasia and World Finals (𝜏 =

8. Northern Eurasia superregional finals were on 4/12/22, lack of
attendance (a 70 team drop compared to the average) was likely due
to geopolitical events involving war beginning two months prior. A
separate “Northern Eurasia Finals: South Caucasus Championship”
was held with 21 teams for only this year and was excluded from
analysis.

TABLE 8
Data range of Northern Eurasia regionals and the Northern Eurasia

Finals (superregional contest). We used data publicly available on the
official website in the past 10 years. Missing data is listed as

[range] \ missing, years. See Section 3.4 for details.

Name Years

Northern Eurasia Finals 2018–2024
Armenia 2015–2024
Azerbaijan 2015–2024 \ 20228

Belarus 2015–2024
Central 2015–2024 \ 2021

East Siberian 2015–2024 \ 2019, 21
Far Eastern 2015–2024 \ 2019, 21
Georgia 2015–2024 \ 20228

Kazakhstan 2015–2024 \ 2019, 21
Kyrgyzstan 2015–2024 \ 2019, 21
Moscow 2015–2024

Northwestern 2015–2024
Southern and Volga 2015–2024 \ 2019, 21

Taurida 2015, 2016, 2020
Tajikistan 2024

Ural/Eastern 2015–2024
Uzbekistan 2015–2024 \ 2017

West Siberian 2015–2024

TABLE 9
Rank correlation between Northern Eurasia regionals and

superregional. We include the number of pairs of teams we used in the
calculation and the rank correlation coefficient, rounded to .001.

Championship data is not available before 2018, so these correlations
are measured over data from 2018–2024.

Excluded data (required to have > 1 team advancing to analyze):
Tajikistan only had 1 team advance during 2024. Uzbekistan only had 1
team advance during 2017. Tauridia only had > 1 team advance during

2015, 16, and 20.

Name # Coefficient

Armenia 57 0.754
Azerbaijan 118 0.610
Belarus 327 0.700
Central 174 0.494

East Siberian 121 0.603
Far Eastern 31 0.613
Georgia 215 0.647

Kazakhstan 296 0.757
Kyrgyzstan 95 0.663
Moscow 345 0.659

Northwestern 259 0.807
Southern and Volga 547 0.631

Taurida 3 -0.333
Ural/Eastern 539 0.663
Uzbekistan 304 0.638

West Siberian 349 0.679
Weighted Average - 0.666

0.521). Northern Eurasia is only slightly more internally
consistent than North America (𝜏 = 0.577), as both are
strongly correlated.

4 Discussion

RQ1. Does team performance consistency differ between
different ICPC regions? If so, what is the difference?
During our analysis, we found that team performance in
Northern Eurasia correlates to the World Finals at a sig-
nificantly stronger scale than other contests (more then
.1 difference to the average). We give a visualized repre-
sentation in Figure 2. This finding corroborates with the
folklore understanding that both Russian contests and ICPC

https://icpc.global/regionals/finder/Mid-Atlantic-USA-2024/standings
https://icpc.global/regionals/finder/Northeast-North-America-2024/standings
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World Finals has a tendency to focus on the observation of
problems and the ability to come up with ad-hoc solutions.

Northern Eurasia Finals

North America Championship

Asia West Continent Final Contest

Asia East Continent Final Contest

Africa & Arab Collegiate Programming Championship

Regions

0.0 0.1 0.2 0.3 0.4 0.5
Coefficient

Fig. 2. Rank correlation between superregional and World Finals. Red
dashed line represents the average.

RQ2. Is online competitive programming rating a good
indicator of ICPC performance? If so, does it resemble
contests from a specific region more than the others? Based
on our results, we see that both World Finals and Northern
Eurasia Finals have a strong correlation with Codeforces rat-
ing. This result further reinforces the idea that the problem
setting in these contests is more similar to online contests,
where the ability to do observation and come up with ad-
hoc solutions is more important. We illustrate this in Fig-
ure 3.

Northern Eurasia Finals

North America Championship

Asia West Continent Final Contest

Asia East Continent Final Contest

Africa & Arab Collegiate Programming Championship

World Finals

Regions

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Coefficient

Fig. 3. Rank correlation between Codeforces ratings and ICPC contests.

RQ3. Can we leverage our understanding of performance
consistency to improve competitive programming events?
We show all correlations above 0.35 in Figure 4. We observe
that the correlations seem to be clustered — World Finals,
Codeforces and Northern Eurasia Finals align with coef-
ficient greater than 𝜏 = 0.52 (strongly correlated), while
North America Championship, Africa & Arab Collegiate
Programming Championship and Asia East Continent Final
Contest align with World Finals and/or Codeforces with
coefficient close to 0.4.

In addition to later discussion, we suggest that in order
to host contests more aligned with World Finals, it could
be helpful to study the problem styles and organizations of
Northern Eurasia Finals and Codeforces.
Educational Implications. Our rank-correlation analysis
shows that contests with high tier-to-tier consistency—most
notably Northern Eurasia Finals (regional → superregional
𝜏 ≈ 0.67; superregional → World Finals 𝜏 ≈ 0.52) —

World Finals

Codeforces

Northern Eurasia Finals

North America Championship

Africa & Arab Collegiate
Programming Championship

Asia East Continent Final Contest

0.596

0.545

0.52
1

0.396
0.415

0.410

0.395

Fig. 4. Team performance correlation of different contests. We list all
correlations with Tau coefficient greater than 0.35. Correlations with Tau
coefficient greater than 0.49 (strongly correlated) are bolded.

may serve as reliable, low-stakes proxies for eventual WF
performance. In such regions, a team’s regional standing
provides an early, data-driven forecast of its world-level
prospects. Instructors can thereby diagnose weaknesses,
prescribe targeted practice, and retest in the next regional
cycle with reasonable confidence that any rank change
reflects genuine skill development rather than contest id-
iosyncrasies. Conversely, where consistency is weak (e.g.,
Asia West 𝜏 ≈ 0.19), regional feedback is noisier, and teams
may benefit more from alternative benchmarks such as high-
frequency Codeforces rounds (WF 𝜏 ≈ 0.60). Although we
did not measure learning gains directly, these findings sug-
gest that aligning regional problem style with superregional
andWF norms could amplify the formative value of regional
contests and streamline training pipelines.
Practical Implications. On a practical note, while the cor-
relational coefficients shed some light on the similarities
between regionals, superregionals, and worlds, we think
that there are more points to consider when making de-
cisions about trainings and contests. For example, ECNA
(our region), is strongly correlated with NAC. However, we
know anecdotally that ECNA tends to emphasize implemen-
tation problems more than NAC does, and we prepare our
teams accordingly, despite the strong correlation with NAC
(𝜏 ≈ 0.56).

Therefore, we recommend considering several other fac-
tors, including difficulty of other teams present (many high-
performing teams in a region may cause a low correlation
with the superregional due to top teams from that region
“fighting for first,” leading to pseudo-random permutations
of those teams), general problem style (hard to quantify),
and how well the region performs as a whole at superre-
gionals (e.g. if the entire region performs poorly at superre-
gionals, that may be an indication that regional that those
teams spent most of their time preparing for does not align
well in structure or style with the superregionals; this could
be measured by average or median rank of teams from each
region in superregionals). These observations highlight the
need for quantitative models of problem style and regional
competitiveness, directions we outline next.

5 Future Directions and Open Problems
The present work provides an initial, correlational snap-
shot of performance consistency across ICPC contests, yet
several substantive questions remain unanswered. Below
we outline the most pressing next steps, both empirical
and methodological, that would deepen our understanding
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of how contest structure and problem design shape team
outcomes.

5.1 Richer Descriptive Statistics on Regional Perfor-
mance
Our analyses relied primarily on Kendall’s 𝜏 between rank-
ordered lists. To capture distributional effects, future studies
should report the mean, median, and standard deviation
of each superregion’s World Finals placings over the last
decade and visualize cumulative-density curves of those
ranks (one curve per region, five superregions per figure).
Such plots will reveal whether a superregion’s teams cluster
tightly (high internal parity) or exhibit long performance
“tails,” complementing the pair-wise correlation picture we
provide here. The code framework already aggregates con-
test standings, so adding these statistics is principally an
engineering task.

5.2 Quantifying Problem-Style Alignment
Our interpretation that Northern Eurasia’s problems re-
semble World Finals and Codeforces sets remains anecdo-
tal. A definitive test requires coding every problem from
the last ten years of superregional contests and extract-
ing style features — e.g., topic tags, required algorithms,
and solution conciseness. Natural-language processing on
statements, plus static analysis of reference solutions, could
yield a feature vector per problem. A classifier trained on
World Finals vs. other sources would then let us score each
regional set for “WF-likeness,” producing a quantitative
bridge between RQ1 (performance consistency) and RQ3
(design recommendations). Because problem material is
often private, securing cooperation from ICPC and regional
organizers is a prerequisite.

5.3 Repeated or Multi-Stage Superregionals
Codeforces outperforms every superregional as a predictor
of WF ranks (𝜏 = 0.596 vs. 0.407 superregional average)
largely because it offers hundreds of rating samples per year.
A natural experiment is running two superregional rounds
(e.g., fall and spring) and testing whether the second round
improves the correlation with World Finals. This design
would also let us measure within-team variance across
similar, high-stakes contests, an aspect invisible in one-shot
championships. Unfortunately, such a fundamental change
to contest structure is unlikely at the superregional level, but
may be viable at a regional or subregional level.

5.4 Discrimination and Resolution of Problem Sets
High correlation does not guarantee that a contest dis-
criminates effectively among world-class teams. For each
superregional, we propose computing a discrimination fac-
tor: the ratio of pairwise rank inversions among advancing
teams when moving from superregional to World Finals.
Low ratios indicate that the earlier contest already separated
teams on the relevant dimensions of skill; high ratios suggest
that the superregional set failed to expose meaningful differ-
ences. A similar metric can be calculated between regionals
and superregionals.

5.5 Cross-Circuit Generalization

While this study focused on Codeforces, extending the
dataset to AtCoder, LeetCode, and HackerRank ratings
would test whether the predictive power stems from plat-
form diversity or contest frequency. A multivariate regres-
sion on multiple online ratings could isolate which platform
characteristics (problem style, duration, scoring, editorial
quality) explain additional variance in WF performance
beyond Codeforces alone. We conjecture that Codeforces is
the top-performing of these datasets, as it is widely regarded
as the most authoritative online-only source of CP rankings.

5.6 Longitudinal Team Tracking and Causal Inference

Our correlation design cannot disentangle selection ef-
fects from causal ones. Building a panel dataset that fol-
lows individual students across several seasons (recording
training regimen, online-contest volume, and team compo-
sition changes) would enable difference-in-differences or
hierarchical-mixed modeling. Such designs could test, for
instance, whether adding a Codeforces-style “observation”
problem to a regional directly improves later WF rank for
the same team.

5.7 Data Completeness and Imputation

World finalists were the primary target of [24], [25], [26],
but most regions lose a substantial number of observations
at the regional level. Before extending the analysis, we
must document the exact exclusion counts and test mul-
tiple imputation strategies (e.g., Bayesian ridge, k-nearest
neighbors) to ensure that missing data do not bias 𝜏-
estimates downward. A sensitivity analysis should accom-
pany any imputed results. Furthermore, deep investigation
has yielded two new Codeforces datasets from 2020 and
20199, which should be downloaded, formatted, and added
to present analysis.

5.8 Comparative Case Studies Beyond ICPC

Preliminary checks show China’s IOI pipeline (NOIP→NOI)
yields 𝜏 ≈ 0.3773 — remarkably close to the averages
we observe for ICPC superregionals. Thoroughly analyzing
such parallel ecosystems will test the external validity of our
claims and may uncover structural elements (e.g., national
training camps, centralized problem-setting committees)
that generalize across competitions.

5.9 Educational Impact Metrics

Finally, to honor the educational motivation of competitive
programming, future work should measure learning gains
— not just rank correlations. Embedding short conceptual
quizzes before and after training phases, or analyzing code-
quality metrics in post-contest repositories, would reveal
whether regions with higher performance consistency also
foster deeper algorithmic understanding.

9. https://codeforces.com/blog/Laggy

https://codeforces.com/blog/Laggy
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6 Conclusion
Addressing the directions listed above will transform the
present exploratory correlations into a comprehensive,
evidence-driven model of how contest architecture influ-
ences educational and competitive outcomes. We invite
collaboration from contest organizers, educators, and data
owners to make these next steps possible and to move
competitive programming research from anecdote toward
reproducible science.
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