Exploiting PDF Obfuscation in LLMs, arXiv, and More

Zhongtang Luo
Purdue University

Abstract

Many modern systems parse PDF files to extract semantic in-
formation, including multimodal large language models and
academic submission platforms. We show that this practice
is extremely vulnerable in real-world use cases. By exploit-
ing standard-compliant features of the PDF page description
language, an adversary can craft PDFs whose parsed content
differs arbitrarily from what is visually rendered to human
readers and whose metadata can be manipulated to mislead
automated systems.

We demonstrate two concrete vulnerabilities. First, we
build adversarial PDFs using font-level glyph remapping that
cause several widely deployed multimodal language mod-
els to extract incorrect text, while remaining visually indis-
tinguishable from benign documents. Across six platforms,
most systems that rely on PDF text extraction are vulnera-
ble, whereas OCR-based pipelines are robust. Second, we
analyze arXiv’s TeX-detection mechanism and show that it
relies on brittle metadata and font heuristics, which can be
fully bypassed without changing the visual output.

Our findings reveal a potential risk arising from discrep-
ancies between automated PDF parsing and human-visible
semantics. We argue that rendering-based interpretation, fol-
lowed by computer vision, is one better approach for security-
sensitive PDF interpretation.

1 Introduction

Portable Document Format (PDF) is a file format developed
by Adobe in 1992 to present documents in a manner inde-
pendent of application software, hardware, and operating sys-
tems.

The PDF file format is heavily based on Postscript, which
is a page description language that describes various elements
on a page, such as text stream, fonts, images, and vector
graphics. Many systems with the need to interpret a PDF,
such as multimodal large language models and academic pa-
per repositories, rely on interpreting the underlying page de-

Jianting Zhang
Purdue University

Zheng Zhong
Purdue University

scription language to extract the PDF’s content. In this pa-
per, we argue that parsing the page description language
of PDF files for information extraction is highly vulner-
able in practice, since a variety of obfuscation techniques
can be exploited to mislead parsers while still being rendered
correctly by PDF viewers.

To illustrate this issue, we present two vulnerabilities in
popular systems that parse PDF files.

1. Many modern multimodal large language models allow
the model to read information from PDF directly with-
out visually inspecting the rendered contents. We show
how to build an adversarial PDF file that, when parsed
by some multimodal large language model, yields arbi-
trarily different parsed content compared to when the
same PDF file is rendered and visually presented.

2. arXiv forces every submission to include the TeX source
when the PDF submission is generated by TeX, and em-
ploys a built-in detector for the purpose. In response, we
build a Python script that edits the Metadata of a TeX-
generated PDF file, such that the built-in arXiv detector
is misled to believe that the PDF file is not generated by
TeX, while the visual rendering of the PDF file remains
unchanged.

In contrast, we argue that one sound way to interpret a
PDF file is to render it visually and then use computer
vision techniques to understand the rendered content.
While this approach may be more computationally expen-
sive, it is the only way to ensure that the interpreted content
matches what a human would see when viewing the PDF.

This claim is validated by our experiments on chatbots,
where we find that chatbots that employ optical character
recognition (OCR) techniques to read rendered content (such
as Gemini and Grok) are more robust against our PDF ob-
fuscation attacks, while chatbots that rely on standard PDF
text extraction methods (such as ChatGPT, Claude, Acrobat
Al Assistant, and Copilot) are vulnerable.

Responsible Disclosure. We have reported our findings of
chatbot vulnerabilities to all tested parties during October
and November 2025. As of January 2026, xAI and Microsoft

have responded and acknowledged our findings.

We have reported our findings to arXiv on October 19,
2025. arXiv responded on October 21, assuring us that they
did not consider our finding a security risk, as they actually
“(do) not require TeX source in all situations,” and “there is
always still a human in the loop (to perform moderation),”
and allowed us to release what we have found. As such, we
feel comfortable to release our findings.

2 Technical Overview

We preface the technical details with a brief overview of the
PDF file structure, and then outline the key steps in our two
main attacks.

PDF File Structure. The PDF file format, specified as ISO
32000-2 [1], mainly consists of a list of objects that reference
each other, loosely forming a tree structure. The Catalog ob-
ject is the root of this tree, which points to other objects that
define the structure of the PDF document, including the Pages
object that points to the Page objects representing individual
pages. Each Page object contains a Contents object and a Re-
sources object. The Contents object holds the actual content
stream of the page, including specific drawing commands for
text, images, and graphics. The Resources object that defines
the resources used on that page, such as fonts and images.

Additionally, the PDF file contains an Info object that holds
metadata about the document, such as the author, title, and
creation date.

It is worth noting that, since a document only uses a small
subset of the glyphs in a font, PDF files often embed subsets
of fonts to reduce file size. These embedded font subsets are
typically given random prefixes in their names to avoid nam-
ing conflicts.

Figure 1 illustrates a simplified PDF structure generated
from a LaTeX document. The PDF structure highlights the
hierarchical relationships between various objects in the PDF
file.

Creating Obfuscated PDFs for LLMs. We observe that
for LLMs that parse the PDF content stream directly, they
attempt to fetch text by interpreting the PDF drawing com-
mands which put glyphs from fonts in the embedded file on
the page, and extract the character codes of the glyphs as the
text. While in ordinary PDFs, the character codes correspond
to the ASCII/Unicode values of the characters displayed on
the page in the reading order, we can create adversarial PDFs
where the character codes correspond to completely different
characters, or where the characters are out of order.

To create such an adversarial PDF, we consider two dif-
ferent methods. In the first method, we build a custom font
where the glyphs for certain character codes are replaced with
glyphs that look like completely different characters (Sec-
tion 4.1). For example, we can build a font where the glyph
for the character code corresponding to ‘A’ is replaced with

\documentclass{article}
\begin{document}

\section*{Test Document}

This is a test document to check the

- functionality of the LaTeX setup.
$$a=b+c.$$

\end{document}

Catalog (21 0@ obj)
L— pages (8 @ obj)
L— Page (2 @ obj)
Contents (3 0 obj)
L— "BT /F38 14.3462 Tf 133.768 707.125 Td
[(T)94(est)-375(Do)-31(cumen)31(t)]TI/F28
9.9626 Tf 0 -21.821 Td
[(This)—333(is)-33h(a)-333(test)-333(do)-J
28(cumen)28(t)—33A(to)—333(c)28(hec)27(k)J
-333(the)-333(functionalit)28(y)-334(of)-
333(the)-333(LaT)83(eX)-333(setup.)]TI/F31
9.9626 Tf 150.816 -21.918 Td [(a)]TJ/F28
9.9626 Tf 8.033 0 Td [(=)]TJI/F31 9.9626 Tf
10.516 0 Td [(b)ITJI/F28 9.9626 Tf 6.49 @
Td [(+)]TI/F31 9.9626 Tf 9.962 0 Td
[(c:)ITI/F28 9.9626 Tf -16.452 -524.131 Td
[(1)]T]) ET"
Resources
Font /F28 (5 0 obj, /MZCFWZ+CMR10)
Font /F31 (6 @ obj, /IOSIJS+CMMI10)
Font /F38 (4 0 obj, /LORVAG+CMBX12)

[-f crccccceceeooe

Info (22 0 obj)

Figure 1: A LaTeX document and its compiled PDF structure
(simplified).

a glyph that looks like ‘Z’, and so on. We then create a PDF
that uses this custom font to display text that looks normal to
a human reader, but when parsed by an LLM, the extracted
text is completely different. In the second method, we manip-
ulate the position of glyphs on the page such that the visual
order of characters is different from the order in which they
are drawn in the content stream (Section 4.2). For example,
we can draw the character ‘1’ at a certain position, then move
the cursor back and draw ‘2’ before ‘1°, resulting in a visual
output of ‘21’ while the content stream has ‘12’. This way,
when an LLM parses the PDF, it extracts the text in the or-
der of drawing commands, which is different from what is
visually rendered.

We tested our attacks on six different chatbot platforms,
and find that our attacks succeed in misleading four out of
the six platforms, and partially succeed in another one. Our
attack fails only on platforms that employ optical character
recognition (OCR) techniques to extract text from the ren-
dered PDF, such as Gemini, as OCR extracts text based on
visual rendering rather than PDF text extraction methods.

Editing PDF Metadata for arXiv. Based on our obser-
vations and experiments in Section 5.1, the arXiv’s built-in

checker TeXRay appears to rely on two main detection mech-
anisms to identify TeX-generated PDF files:

1. PDF Metadata Fields. TeXRay inspects specific meta-
data fields in the PDF file to see if the PDF carries meta-
data from the TeX engine. Specifically, if the Producer
or Creator field contains “tex” without being followed
by the letter “t” (which forms “text”), TeXRay flags the
PDF as TeX-generated.

2. Embedded Font Information. TeXRay analyzes the
embedded font information within the PDF file, looking
for font names and characteristics that are commonly as-
sociated with TeX-generated documents. Specifically, if
the “BaseFont” field of any font contains “CMR” (Com-
puter Modern Roman), TeXRay flags the PDF as TeX-
generated.

Circumventing TeXRay. We show that our understanding of
TeXRay’s detection mechanisms is complete by demonstrat-
ing two methods that can completely bypass TeXRay’s detec-
tion, as detailed in Section 5.2:

1. LaTeX Macro-based Bypass. By incorporating a La-
TeX macro that modifies the PDF metadata fields and
uses non-TeX-specific fonts, we can compile TeX source
files into PDF files that evade TeXRay’s detection.

2. Post-processing-based Bypass. By using a Python
script to post-process the compiled PDF file, we can al-
ter the relevant PDF metadata fields and embedded font
information to avoid detection by TeXRay.

We give the full scripts in the respective sections.

TeX Translation. To argue that arXiv’s goal of distinguish-
ing TeX-generated PDF files from other typesetting systems
is fundamentally unsound and show that there are no intrinsic
differences between PDF files from different engines, we de-
velop a prototype obfuscation system that transforms a TeX-
generated PDF file to a Typst-generated PDF file, as detailed
in Section 5.3. We note that when the TeX source files are
available, many modern toolchains (including LLMs) can
directly convert TeX source files to other typesetting sys-
tems and then compile. Therefore, we focus on the sce-
nario where only the TeX-generated PDF file is available.
By modifying the content streams of the TeX-generated PDF
file, we can produce an obfuscated PDF file that looks like a
Typst-generated PDF file while maintaining a visually near-
identical output. Figure 2 shows one such example from Sec-
tion 5.3.

3 Preliminaries

Multimodal Large Language Models. Multimodal large
language models extend text-only language models by incor-
porating additional input modalities such as images, audio,
and documents. In the context of document understanding,
they are commonly equipped with PDF ingestion pipelines
that convert PDF files into intermediate representations—for

BT

/F31 9.96264 Tf

100 1 140.944 656.037 Tm [<00350049004A0054>—333<00J
. 4A0054>-333<0042>-333<0055004600540055>-333<00510
- 0420053004200480053004200510049000F>]TJ

100 1 303.509 96.112 Tm [<0012>]TJ

ET

100 -10 841.8898 cm
/d65gray cs

0 scn

/F31 9.96264 Tf

BT

100 -1 140.94 185.85 Tm [(\000\065\000\111\000\112\ |
000\124\000\001\000\112\000\124\000\001\000\102\0 |
00\001\000\125\000\106\000\124\000\125\000\001\00 |
0\121\000\102\000\123\000\102\000\110\000\123\000 |
\102\000\121\000\111\000\017)] TJ

100 -1 303.51 745.78 Tm [(\000\022)] TJ
ET

& e e

Figure 2: An example of rewriting a TeX-generated content
stream (top) to a Typst-style content stream (bottom) from
Section 5.3.

example, extracted text streams, layout information, or ren-
dered images—which are then provided to the model as input.
Different systems adopt different ingestion strategies: some
rely primarily on native PDF text extraction, while others ren-
der the document visually and apply optical character recog-
nition (OCR) to the rendered pages. These design choices
are typically abstracted away from end users, who interact
with the model under the assumption that the model’s inter-
pretation reflects the document as it would appear to a human
reader. This assumption underlies many downstream appli-
cations of LLMs for summarization, question answering, and
content verification over PDF documents.

Preprint Repositories and arXiv. Preprint repositories
are online platforms that allow researchers to share their
manuscripts prior to formal peer review and publication in
academic journals. These repositories facilitate rapid dis-
semination of research findings, enabling the scientific com-
munity to access and build upon new knowledge without the
delays associated with traditional publishing processes.
arXiv is listed as one of the largest preprint repositories
on Wikipedia [31] with >1,000,000 preprints for research
manuscripts (“e-prints”) across physics, mathematics, com-
puter science, and related disciplines. Established in 1991,
it has become the primary venue for sharing preprints prior
to journal publication, reaching over two million submissions
by 2021 and currently receiving roughly 24,000 new papers
per month. Although arXiv is not a peer-reviewed platform,
each subject area is moderated to filter non-scientific or oft-
topic content. An endorsement mechanism, typically auto-
matic for recognized academic authors, further helps main-
tain relevance within disciplines [7]. Many e-prints later ap-
pear in journals, yet arXiv itself has hosted landmark works

that never underwent formal publication. A notable case is
Grigori Perelman’s 2002 proof of the Poincaré conjecture,
disseminated exclusively via arXiv but nonetheless acknowl-
edged as one of the century’s most significant mathematical
achievements [26].

arXiv has a list of policies governing submissions, among
them a soft requirement to submit TeX files when avail-
able [7]:

Note: a PDF file created from a TeX/LaTeX file will
typically be rejected, with exceptions granted on a case-
by-case basis. There are good reasons why arXiv insists
on TeX/LaTeX source if it is available. arXiv produces
PDF automatically from all TeX submitted source.

On the other hand, other similar STEM preprint reposito-
ries, such as bioRxiv and Cryptology ePrint Archive, do not
have such a requirement and ask for PDF-only submissions.

Typesetting Systems. Throughout the history of digital type-
setting, multiple systems have been developed to facilitate the
creation of high-quality documents. We introduce a few no-
table typesetting systems below.

TeX/LaTeX. TeX, created by Donald Knuth in 1978, is a type-
setting system widely used in academia, particularly in math-
ematics, computer science, and physics. LaTeX, developed
by Leslie Lamport in the 1980s, is a macro package built on
top of TeX that simplifies document formatting and structur-
ing. Most STEM field conferences and journals provide La-
TeX templates for authors to use. While TeX supports com-
piling documents into various formats, including DVI and
PostScript, PDF has become the dominant output format in
recent years.

Word Processors. Microsoft Word, first released in 1983, has
been the de facto standard word processing software since
the 1990s. It provides a WYSIWYG (what you see is what
you get) interface that allows users to create and format doc-
uments visually, without needing to understand the underly-
ing markup or code. Multiple interdisciplinary fields, such
as human-computer interaction and computer science edu-
cation, often accept Word-based submissions [28]. Word
mainly uses a proprietary binary format (.doc) for older ver-
sions and an XML-based format (.docx) for newer versions.
Multiple spinoff projects, such as LibreOffice Writer and
WPS, also support the format. For export purposes, Word
can generate PDF files directly from the application.

Markdown-based Systems. Modern typesetting systems of-
ten leverage lightweight markup languages like Markdown
to simplify document creation. For instance, Typst [30], ini-
tially released in 2023, brands itself as a new markup-based
typesetting system for the sciences, and contains a few tem-
plates for academic papers. Typst uses its own .typst format
for source files, and can export documents to PDF directly.

4 Creating Obfuscated PDFs for LLMs

Modern multimodal large language models have the capabil-
ity to process and understand content from various file for-
mats. To leverage this capability, the user uploads any sup-
ported file to the chatbot interface. The system then parses
the file, and produces an output based on the content of the
uploaded file.

Based on empirical observations, we find that when pars-
ing a PDF file, most systems directly extract the binary stream
and have the model parse it, with the exception of a few mod-
els, such as Gemini, that render the visual content of the PDF
file and employ computer vision techniques to interpret the
image.

In this section, we refine two techniques to create obfus-
cated PDFs that can mislead LLMs: font data manipulation
and glyph position manipulation. We then evaluate their ef-
fectiveness against various commercial chatbot systems.

4.1 Font Data Manipulation

Recall that in order to save space, PDF files often use cus-
tom font subsets that only include the glyphs necessary for
rendering the text in the document. While it is possible to
maintain a standard character encoding, such as ASCII or
Mac OS Roman (WinAnsiEncoding and MacRomanEncod-
ing, respectively, in Section 9.10.2 of the PDF 1.7 specifica-
tion [1]), the presence of multilingual characters outside the
standard ASCII range often leads to the use of custom encod-
ings. For instance, we observe that while the standard TeX
still uses ASCII encoding for the default Computer Modern
font (e.g. Figure 1), it no longer does so when switched to an-
other font. Typst, on the other hand, always uses custom font
subsets with custom encodings, regardless of the font choice
(e.g. Figure 11).

However, for the operating system to correctly understand
the content of the file, it needs to identify the glyphs in the
font subset. Otherwise, common convenience features, such
as copy-paste, would be impossible. To address the issue,
PDF files include a ToUnicode CMap (character map) that
maps the character codes used in the content stream to Uni-
code code points for each font. This mapping allows the oper-
ating system to correctly interpret the text, even when custom
font subsets and encodings are used. Figure 3 shows an ex-
ample of such mapping.

We observe that for chatbot systems that directly parse the
binary stream of a PDF file, they often rely on the ToUnicode
CMap to interpret the text content. To create an obfuscated
PDF that misleads such systems, we modify the font data to
create a mismatch between the visual representation and the
interpreted content.

Specifically, we create a set of adversarial fonts by taking
a base font (e.g., Roboto) and replacing all glyph outlines
with the outline of a single target character. For instance,

Glyph _) 1
(Visual)
Code 20 oE a1
(Stream)
Unicode
(Meaning) u+0020 U+002E U+0031

Figure 3: An illustration of the relationship between glyphs,
character codes, and Unicode code points in a PDF font sub-
set with a ToUnicode CMap, taken from the Typst generated
PDF in Figure 11. Each character code is mapped to a glyph
in the font data, as well as mapped to a Unicode code point
via the ToUnicode CMap.

Visually: A Visually: Space
Glyph A _
(Visual)
| Adversarial Font | Adversarial Font
Code '
(Stream) & o
l ToUnicode l ToUnicode
Unicod
(Meaning) U043 U+006F

Extracted: C Extracted: o

Figure 4: An illustration of the font data manipulation attack.
In this example, the PDF contains the character code for ‘C’
(0x43), which the ToUnicode map correctly interprets as ‘C’.
However, the adversarial font maps this code to the glyph ‘A’,
causing a discrepancy between the visual output ‘A’ and the
extracted text ‘C’. In the second example, the character code
for ‘0’ (0x6F) is mapped to a space glyph, resulting in a visual
output of a space while extracting ‘o’ from the perspective of
chatbots.

an adversarial font for the letter ‘A’ would have all glyphs—
including those for ‘B’, ‘C’, ‘D’, etc.—visually rendered as
‘A’. We generate one such adversarial font for each printable
ASCII character, resulting in a collection of fonts where each
font displays only one specific character regardless of the in-
put.

To construct the obfuscated PDF, we iterate through each
character pair (h,d), where h is the human-visible character
and d is the digital (machine-readable) character. For each
pair, we select the adversarial font where all glyphs render as
h, then write the character code for d into the content stream.
Since the ToUnicode CMap maps the character code to d, text
extraction tools will read d, while humans viewing the PDF
will see h. Figure 4 illustrates examples of such glyph re-
placements.

4.2 Glyph Position Manipulation

Similar to font data manipulation, we observe that while by
convention, the glyph order in the PDF stream follows the
natural reading order of the text, there is no strict requirement
enforcing this. PDF text operators allow absolute positioning
of each character or string on the page, meaning characters
can be written to the content stream in any order and placed
at arbitrary coordinates.

For example, to display ‘123456’ visually while encoding
‘126453’ in the content stream, we write the characters in the
order 1, 2, 6, 4, 5, 3, but position them at coordinates corre-
sponding to their visual locations. The character ‘6’ is writ-
ten third but positioned at the sixth slot, while ‘3’ is written
last but positioned at the third slot. Text extraction tools that
read the content stream sequentially will extract ‘126453,
while humans see ‘123456°. We present a general method
to achieve this attack below.

1. First, we convert all relative positioning commands
(e.g., ‘Td’) in the content stream to absolute position-
ing commands (i.e., ‘Tm’). This allows us to place each
glyph at specific coordinates on the page regardless of
their relative order.

2. Then, we reorder the glyph drawing commands in the
content stream to reflect the desired hidden text order.

Figure 5 illustrates how absolute positioning enables this
reordering attack.

BT 1 0 0 1 440 700 Tm (1) Tj Tx ET
BT 10 0 1 453 700 Tm (2) Tj Tx ET
BT 10 0 1 466 700 Tm (3) Tj Tx ET
BT 100 1479 700 Tm (4) Tj Tx ET
BT 10 0 1 492 700 Tm (5) Tj Tx ET
BT 1 0 0 1 505 700 Tm (6) Tj Tx ET
BT 10 0 1 440 700 Tm (1) Tj Tx ET
BT 1 0 0 1 453 700 Tm (2) Tj Tx ET
BT 1 0 0 1 505 700 Tm (6) Tj Tx ET
BT 100 1479 700 Tm (4) Tj Tx ET
BT 100 1492 700 Tm (5) Tj Tx ET
BT 10 0 1 466 700 Tm (3) Tj Tx ET

Figure 5: After converting the relative positioning com-
mands to absolute positioning commands, we can swap the
glyphs without affecting the rendered output. The top con-
tent stream and the bottom content stream render the same vi-
sual output ‘123456’, since all characters are positioned at the
same coordinates. However, the top content stream encodes
‘123456’ in the stream, while the bottom content stream en-
codes ‘126453’.

4.3 Evaluation

We perform evaluations on various chatbot platforms based
on two generated documents to assess the effectiveness of our
PDF obfuscation techniques.

1. The first document makes use of the font data manip-
ulation technique, rendering ‘A small bird lost its way
in the forest, but a kind fox showed it the path home.
That night, they felt happy to have found a friend under
the bright stars.” while encoding ‘Computer security re-
searchers carefully crafted a PDF file. Its content looks
completely different from a human than from a chatbot.’
in the stream. Figure 6 shows a screenshot and content
stream excerpt of this document.

2. The second document employs the glyph position ma-
nipulation technique, rendering ‘The total amount of the
product order is: 123456’ but encoding ‘126453’ in the
stream. Figure 7 shows a screenshot and content stream
excerpt of this document.

A small bird lost its way in the forest, but a kind fox showed it the path home. That night, they felt
happy to have found a friend under the bright stars.

50 692 Tm /F2+0 12 Tf 14.4 TL (C) Tj T* ET
57.82812 692 Tm /F3+0 12 Tf 14.4 TL (o) Tj T ET
60.80469 692 Tm /F4+@ 12 Tf 14.4 TL (m) Tj T ET
66.99805 692 Tm /F5+0 12 Tf 14.4 TL (p) Tj Tx ET
77.52148 692 Tm /F6+0 12 Tf 14.4 TL (u) Tj T ET
84.04883 692 Tm /F7+0 12 Tf 14.4 TL (t) Tj T ET
86.9668 692 Tm /F7+0 12 Tf 14.4 TL (e) Tj T* ET
89.88477 692 Tm /F3+0 12 Tf 14.4 TL (r) Tj T ET
92.86133 692 Tm /F8+0 12 Tf 14.4 TL () Tj T ET
99.59961 692 Tm /F9+0 12 Tf 14.4 TL (s) Tj T ET
102.5176 692 Tm /F10+0 12 Tf 14.4 TL (e) Tj T* ET
106.584 692 Tm /F11+0 12 Tf 14.4 TL (c) Tj T* ET
113.3516 692 Tm /F3+0 12 Tf 14.4 TL (u) Tj Tx ET
116.3281 692 Tm /F7+0 12 Tf 14.4 TL (r) Tj T* ET
119.2461 692 Tm /F12+0 12 Tf 14.4 TL (i) Tj Tx ET

0 UM MW m®EE®E®EE®E®E

+ WWwmw
cHA A A A A A A A A A A A A A A A

126.0898 692 Tm /F4+0 12 Tf 14.4 TL (t) Tj T* ET
132.2832 692 Tm /F13+0 12 Tf 14.4 TL (y) Tj T* ET
136.209 692 Tm /F3+0 12 Tf 14.4 TL () Tj Tx ET

OO0 SS
0000000000000 SS
RRRPRRERRPRRERRERREBRERRRRRRRRRR

RRRRRREBREBRERRRRRREBRRERR

Figure 6: A screenshot and content stream excerpt of the
first proof-of-concept PDF that uses font data manipulation
to mislead PDF text extraction. The rendered text is shown
at the top, while the content stream encoding the hidden text
is shown at the bottom. Through manipulating the font data,
the content stream encodes different characters than those vi-
sually rendered.

We note the resultin Table 1. An example of the interaction
is given in Figure 8. We notice that chatbots that employ OCR
techniques (such as Gemini and Grok) are less susceptible to
our PDF obfuscation attacks, as they can accurately extract
the rendered text from the PDF document. This technique
has been documented by Google Al as “native vision” [15].
However, other chatbots (such as ChatGPT, Claude, Acro-
bat Al Assistant, and Copilot) that rely on standard PDF text
extraction methods are vulnerable to our attacks, leading to
successful misinterpretation of the document content.

An interesting case here is Grok, which employs both PDF
text extraction and OCR techniques. As a result, it can read
different texts based on the different tools it employs. Exam-
ining its chain-of-thought reveals lines such as ‘tool reveals
extracted text as security message, with screenshot showing
bird story.’ The output is inconsistent across multiple at-

The total amount of the product order is: 123456

1001440 700 Tm (1) Tj Tx ET
BT 1 0 0 1 453 700 Tm (2) Tj Tx ET
BT 1 0 0 1 505 700 Tm (6) Tj Tx ET
BT 100 1479 700 Tm (4) Tj Tx ET
BT 100 1492 700 Tm (5) Tj Tx ET
100 1 466 700 Tm (3) Tj T* ET

Figure 7: A screenshot and content stream excerpt of the sec-
ond proof-of-concept PDF that uses glyph position manipu-
lation to mislead PDF text extraction. The rendered text is
shown at the top, while the content stream encoding the hid-
den text is shown at the bottom. Compared to the screenshot,
the content stream encodes the digits in a different order.

Table 1: Attack effectiveness of PDF obfuscation techniques
on various platforms. A ‘Success’ indicates that the attack
successfully misled the chatbot to output the hidden content,
while a ‘Fail’ indicates that the chatbot correctly recognized
the rendered content. A ‘Partial’ indicates that the chatbot’s
output was inconsistent across multiple attempts.

Platform Font Data Glyph Position
ChatGPT [24] Success Success
Gemini [16] Fail Fail
Grok [32] Partial Partial
Claude [5] Success Success
Acrobat Al Assistant [4] Success Success
Copilot [23] Success Success

tempts, showing that it is not aware of the underlying reason
of the discrepancy.

5 Editing PDF Metadata for arXiv

arXiv is a curated research-sharing platform with over two
million scholarly articles [7]. It is the de facto online
manuscript pre-print service for computer science, mathe-
matics, physics, and many interdisciplinary communities.
Since 1991, arXiv has offered a place for researchers to re-
liably share their work as it undergoes the process of peer-
review, and for many researchers it is their primary source of
literature [11].

The submission system of arXiv allows any authorized
user to upload their manuscripts, which are then processed
and hosted on arXiv’s website for free public access. arXiv
has placed numerous policies on the submission system to en-
sure the quality and accessibility of the hosted manuscripts,
including accepting only submissions from endorsed users,

User:

Help me read this PDF.

ChatGPT:

Here’s what’s going on when I try to “read” it.
What the text actually looks like to a parser

Notice the pattern:
 Letters are missing or shifted.
* Words are broken in consistent but non-human ways.
» Spacing and glyph order look wrong.

a chatbot.
But the parser never sees that.

Got it. This PDF is doing something sneaky, and your instinct is right.
When I extract text from the PDF programmatically, this is what comes out:

“C mpute sec rity res arc er ca efully raf e a P F f le. It ¢ nte t 1o ks co plet ly dif eren fro a hu an than from hatbot”

A human visually reading the PDF would likely see something close to:
Computer security researcher carefully crafted a PDF file. Its content looks completely different from a human than from

Gemini:

friend under the bright stars.

Based on the document provided, here is the short story it contains:
A small bird lost its way in the forest, but a kind fox showed it the path home. That night, they felt happy to have found a

Figure 8: Example interactions with ChatGPT and Gemini on the first proof-of-concept PDF with the same user input. ChatGPT
is confident but misled by the obfuscated text extraction, while Gemini correctly reads the rendered text using OCR techniques.

adopting a moderation process before hosting, and various
formatting requirements [7].

Among them, arXiv has a standing policy to force authors
to submit TeX source files when available, and runs a built-in
TeX compiler to produce the final PDF hosted on arXiv [8]. It
claims three reasons for not accepting PDF-only submissions
when TeX files are available: (1) to process submissions into
accessible formats such as HTML; (2) because source files
are of higher archival value; and (3) source files offer greater
insight (in TeX rendering techniques).

However, the policy is not without its debates. The built-in
compiler has limited functionalities and has been complained
as buggy [13]. In arXiv’s own accessibility study [6], 25% of
the respondents cite requiring submitting TeX as a barrier to
submitting accessible papers. Moreover, such policy raises
privacy concerns, as sensitive comments in the TeX source
files may be accidentally released [27]. While arXiv claims
that these concerns do not pose a significant problem [8],
there are dedicated bots on X that scrape comments from TeX
source files [25]. More recent criticism also concerns about

potential data leaks to Al training datasets [20].

Moreover, not all papers use TeX/LaTeX as their type-
setting system. Many fields not purely in STEM, such as
computer science education, also feature a significant num-
ber of Word documents [28]. Furthermore, new technology
stacks that focus on typesetting papers, such as Typst [30], are
emerging as alternatives to TeX. Given that arXiv’s built-in
compiler only supports pdflatex, one of TeX’s three main en-
gines, as of now, and the vast amount of work needed to sup-
port every other typesetting system, as a compromise, arXiv
currently allows authors to upload PDF files, as long as they
are not generated from TeX source files.

To achieve this goal, arXiv runs a built-in checker, which
we nickname TeXRay, to detect if any uploaded PDF file
is generated from a TeX engine. Once detected, arXiv will
block the upload and force the author to submit TeX source
files instead. We give an example of such a TeXRay error
message in Figure 9.

In this section, we conduct a detailed black-box analysis of
TeXRay that outlines its detection mechanisms. We discover

test.pdf appears to have been produced by TeX

This file has been rejected as part your submission because it appears to be pdf generated
from TeX/LaTeX source. For the reasons outlined at in the Why TeX FAQ we insist on
submission of the TeX source rather than the processed version.

Our software includes an automatic TeX processing script that will produce PDF, PostScript
and dvi from your TeX source. If our determination that your submission is TeX produced is
incorrect, you should send e-mail with your submission number to arXiv administrators.

Figure 9: An example of TeXRay error message when uploading a PDF directly generated from TeX source files.

that TeXRay is not a reliable detector of TeX-generated PDF
files, and produce a 100-line Python script that completely
bypasses its detection.

Furthermore, we argue that arXiv’s goal of distinguishing
TeX-generated PDF files from other typesetting systems is
fundamentally unsound. We stress that there is no intrinsic
difference between TeX-generated PDF files and PDF files
generated from other typesetting systems, such as Typst. To
demonstrate this, we develop a prototype obfuscation system
that transforms a TeX-generated PDF file to an obfuscated
PDF file that looks like a Typst-generated PDF file by rewrit-
ing the content streams, while maintaining a visually near-
identical output. This suggests that even if TeXRay were to
be made more robust, it would still be possible to bypass it
with more sophisticated obfuscation techniques.

5.1 Analysis of TeXRay Mechanism

We conduct our analysis of TeXRay by uploading PDF files
with different features to see if arXiv rejects the file as being
generated by TeX. Based on our empirical knowledge, we cat-
egorize the detection mechanism into two main components:
the metadata analysis and the font analysis.

5.1.1 Metadata Analysis

Following ISO 32000-2, a PDF allows any number of key-
value metadata fields, with a few common entries (title, au-
thor, etc.) standardized in the specification [1]. Moreover,
it is well-known that TeX injects specific metadata into the
PDF files it generates. We show an example of such meta-
data extracted from a PDF file generated by LualLaTeX 2024
with pikepdf below.

||/Authorll: nn ,

"/CreationDate": "D:19791231160000-08'00"'",
"/Creator": "LaTeX with hyperref",
II/KeyWordSll: nn ,

"/ModDate": "D:19791231160000-08'00'",
"/PTEX.FullBanner": "This is LuaHBTeX,
Version 1.18.0 (TeX Live 2024/nixos.org)",
"/Producer": "LuaTex-1.18.0",

II/SubjeCtll: nn ,

"/Title" : nn ,
"/Trapped": "/False"

We observe that the metadata contains fields such as Cre-
ator, Producer, etc., which indicate the TeX engine used to
generate the PDF. To understand which part of the metadata
triggers the detection mechanism, we take a PDF file that oth-
erwise passes the arXiv submission process and inject certain
metadata fields. Then, we check if the injected file is rejected
by arXiv. Table 2 summarizes our test results.

Based on the results, we hypothesize that if a PDF file
contains “Creator” or “Producer” dictionary keys in its meta-
data, and the corresponding values of these keys contain “tex”
without being followed by the letter “t” (as to form “text”),
then the PDF file is detected by TeXRay.

Bypass. Given that the PDF metadata is freely editable both
inside and outside the LaTeX system, there are many meth-
ods to bypass such detection mechanism. For instance, the
following TeX command completely rewrites the PDF meta-
data.

\usepackage{hyperref}

% pdflatex
\ifdefined\pdfinfoomitdate
\pdfinfoomitdate=1

\fi
\ifdefined\pdfsuppressptexinfo
\pdfsuppressptexinfo=-1

\fi

% lualatex

\ifdefined\pdfvariable

\pdfvariable suppressoptionalinfo 1023 \relax
\fi

\hypersetup{
pdftitle
pdfauthor
pdfsubject
pdfkeywords = {},
pdfcreator = {Not T3X},
pdfproducer = {Definitely not T3X}

mw mnn
A A A
e

Even when the TeX source is not directly available, plenty
of tools allow editing the PDF metadata based on the PDF

Table 2: Results of injecting different metadata fields into a
PDF file and checking if arXiv’s TeXRay detects it as being
generated from TeX. + indicates undetected, while * indi-
cates detected.

Field Data Undetected?
Creator TeX

Creator ConTeXt
Creator texture
Creator plaintext
Creator pdfTeXt
Creator textext
Creator texttex
Creator tex-text
Creator tex

Creator textex
Creator ConTeX
Creator TeX*
Creator *TeX
Creator LuaLaTeX
Creator pdfTeXs
Creator texas
Creator TeXas
Creator vertex
Creator paleocortex
Producer pdfTeX-1.40.26

Producer pdfConTeXt-1.40.26
Producer texture

Producer plaintext
Producer pdfTeXt

Producer textext

Producer texttex

Producer tex-text

Producer pdftex-1.40.26
Producer pdfConTeX-1.40.26
Producer pdfTeX*x-1.40.26
Producer pdf*TeX-1.40.26
Producer pdfLualLaTeX-1.40.26
Producer TeX

Producer pdfTeXs

Producer texas

Producer TeXas

Producer vertex

Producer paleocortex
Author tex

CreationDate tex

ModDate tex
PTEX.Fullbanner tex

Subject tex

Title tex

Trapped tex

file alone. For instance, pdftk allows removing the metadata
from any PDF file [20].

pdftk $PDFFILE dump_data | \

sed -e 's/\(Infovalue:\)\s.x/\1\ /g' | \
pdftk $PDFFILE update_info - output clean-$PDFFILE

In our Python script, we used pikepdf to clear PDF meta-
data.

for key in list(pdf.docinfo.keys()):

del pdf.docinfo[key]

5.1.2 Font Analysis

Being a portable format aimed for consistency, PDF allows
embedding of fonts to ensure that the output is the same for
every rendering software [1]. To reduce the size of the output,
modern typesetting engines almost always include only a sub-
set of the font that contains only the relevant glyphs used in
the document, coded by “(random 6 capital letters) + (name
of the font)”.

While Computer Modern, the default font used in LaTeX,
is open-sourced and thus free to use in any typesetting soft-
ware [2], its rarity still leads TeXRay to make the interesting
decision that using it is the sure way to detect LaTeX sub-
missions. We can observe the fonts embedded in a PDF file
through pdffonts, a PDF font analyzer from the PDF render-
ing library Poppler [3]. Figure 10 shows the analysis of a
sample PDF file generated by LaTeX.

Since PDF often only includes a different subset of glyphs,
we infer that it is impractical for TeXRay to identify fonts
based on the binary data, which can drastically change based
on what glyphs are available. Instead, based on ISO 32000-
2, each font carries a piece of metadata including FontName,
FontFamily, and BaseFont, which contain the string informa-
tion of the exact font being used in the PDF.

To isolate the relevant part that TeXRay uses for detection,
we upload the same PDF to arXiv except that we include
a font metadata field coming from Computer Roman, and
record whether the PDF remains undetected from TeXRay.
Based on our test results summarized in Table 3, we conclude
that TeXRay inspects the “BaseFont” field of each embedded
font, and if any of them contains “CMR”, then the PDF file
is detected as being generated from TeX. It is worth noting
that the font’s binary data itself, which consists of the font
name, family name, and full name fields, does not trigger the
detection.

Table 3: Results of injecting different font metadata fields
into a PDF file and checking if arXiv’s TeXRay detects it as
being generated from TeX. + indicates undetected, while
indicates detected.

Field Data Undetected?
Font’s FontName QMHNZG+CMR10

Font’s FamilyName Computer Modern

Font’s FullName CMR10

FontName /QMHNZG+CMR10

BaseFont /QMHNZG+CMR10

BaseFont /QMHNZG+CMMI10

BaseFont /QMHNZG+CMBX10

Bypass. Unfortunately for TeXRay, Latin Modern, the suc-
cessor of Computer Modern with an identical look and im-

name type
HQWOEM+LMRoman12-Bold CID Type 0OC
FSFNHQ+LMRoman10-Regular CID Type 0C
IOSIJS+CMMI10 Type 1
RFLZJB+CMR10 Type 1

encoding emb sub uni object ID

Identity-H yes yes yes 4 0
Identity-H yes yes yes 5 0
Builtin yes yes no 6 0
Builtin yes yes no 7 0

Figure 10: An example of embedded fonts in a LaTeX PDF file. LMRoman stands for Latin Modern Roman, and CM(MI/R)

stands for Computer Modern (Math Italic/Regular).

proved support for Type 1 and Unicode, is included in TeX
since 2003 and widely available [18]. It can be used in TeX
through a simple package:

\usepackage{lmodern}

Furthermore, New Computer Modern, a font expanded
from Latin Modern, is also publicly available and widely used
in typesetting software such as Typst by default [30]. There-
fore, TeXRay cannot simply mark the font as an indicator of
the use of TeX. The font can be used in TeX through a simple
package as well:

\usepackage[regular]{newcomputermodern}

Even without access to the TeX source and thus incapable
of using new packages, we observe that every font residing in
the PDF file can be extracted and replaced through utilities
such as pikepdf. In our circumvention script, we use Font-
Forge [14] to edit the extracted font and make sure that the
metadata remains undetected according to TeXRay.

5.2 Circumventing TeXRay

Based on our analysis of TeXRay above, we know that it is
possible to bypass different parts of TeXRay’s detection with
multiple simple techniques. In this section, we present two
combined methods that can completely bypass TeXRay’s de-
tection: a LaTeX macro that compiles with the PDF, and a
Python post-processing script that modifies the relevant PDF
data.

5.2.1 LaTeX Macro-based Bypass

Combining the LaTeX macro in both sections of Section 5.1
gives us a macro that completely bypasses TeXRay’s detec-
tion. We give the full macro below:

\usepackage{hyperref}

% pdflatex
\ifdefined\pdfinfoomitdate
\pdfinfoomitdate=1

\fi
\ifdefined\pdfsuppressptexinfo
\pdfsuppressptexinfo=-1

\fi

% lualatex

\ifdefined\pdfvariable
\pdfvariable suppressoptionalinfo 1023 \relax
\fi

\hypersetup{
pdftitle
pdfauthor
pdfsubject
pdfkeywords = {},
pdfcreator = {Not T3X},

) pdfproducer = {Definitely not T3X}

\usepackage[regular]{newcomputermodern}

mnm unn
A e A
e

5.2.2 Post-processing-based Bypass

In scenarios where modifying the LaTeX source is not pos-
sible, a post-processing script can be used to modify the
PDF metadata and font information after compilation. We
present a Python script that achieves this goal, available at
https://github.com/zhtluo/pdf-ob. The
script mainly fulfills the following two tasks:
1. Itremoves or alters the PDF metadata fields that TeXRay
checks, such as Producer and Creator, to avoid detection.
2. It modifies the embedded font information to replace
TeX-specific font identifiers with generic ones, prevent-
ing TeXRay from recognizing TeX-generated fonts.

5.3 TeX Translation

When the LaTeX source code is available, translation to
other typesetting systems like Typst is often straightforward
through directly translating the source code to the other sys-
tem. Several tools exist for this source-to-source conversion.
For instance, pandoc offers robust document format conver-
sion capabilities. The official Typst web application provides
a built-in feature to import .tex files directly. Furthermore, re-
cent advances in Natural Language Processing have enabled
Large Language Models (LLMs) to perform direct translation
from LaTeX to other systems with reasonable fidelity.

In this section, we focus on the scenario where the original
.tex source is unavailable or otherwise cannot be easily trans-
lated, and only the final compiled PDF document is accessi-
ble. This paper focuses on this challenging context: trans-
forming a PDF file to retain its (mostly) exact visual appear-
ance while rewriting its underlying byte-level structure to be

https://github.com/zhtluo/pdf-ob

indistinguishable from a natively generated Typst document.
This approach bypasses the need for source code, operating
directly on the rendered output.

5.3.1 Comparison of TeX and Typst PDF

We present a comparison between the PDF outputs generated
by TeX and Typst for the same simple document in Figure 1 1.

Based on the comparison, we observe that the two PDF
files share similar high-level structures, but differ signifi-
cantly in their content streams. Therefore, we focus our effort
on rewriting the content streams to match Typst’s style while
preserving the visual appearance.

5.3.2 Rewriting Content Streams

As specified in Chapter 9 in the PDF standard, the text object
in the content stream, surrounded by the BT (begin text) and
ET (end text) operators, contains a sequence of operators that
define how text is rendered on the page. We observe that there
are a few differences regarding how TeX and Typst put text
objects.

1. TeX puts the font resource operator (Tf) inside the text
object, while Typst puts it outside.

2. Typst employs a concatenate matrix (cm) operator to es-
sentially “flip” the Y axis for the text object, while TeX
directly works with the original coordinate system.

3. Typst also employs additional fancy color space opera-
tors (cs and scn) to set the text color to black, while TeX
relies on the default.

Similarly, within the text object, the two systems also differ
in how they position text using the Tm (text matrix) operator
and the TJ (show text with position adjustments) operator.

1. TeX rounds every coordinate in the Tm operator to three
decimal places, while Typst uses up to two decimal
places.

2. TeX uses the hex string format (e.g. <0035>) in the TJ
operator to represent text, while Typst uses the literal
string format with each character represented as a three-
digit octal number (e.g. \OOO\OO1\000\002).

3. TeX uses position adjustments in the TJ operator to ad-
just spacing between characters, while Typst does not
use any position adjustments and relies on using a space
character.

We argue that these details are mostly superficial, and even
if detectors like TeXRay were to inspect them, they could be
easily modified to match Typst’s style without affecting the
visual appearance. To demonstrate the idea, we focus on one
aspect, the concatenate matrix, and explain how we rewrite it
below.

Concatenate Matrix. A concatenate matrix specifies an
affine map with parameters [a b ¢ d e f] interpreted as the

11

3 x 3 matrix

a b 0
lc d O}.
e f 1

The last two parameters, e and f, are the x- and y-offsets (in
PDF points): they shift the origin to (e, f). The linear part
L = [%5] encodes scale, rotation and shear.

Therefore, the concatenate matrix used by Typst

1 0 0
[0 5 o}
0 841.8898 1
essentially encodes a “flip” of the Y axis that goes from the
bottom-left origin (used by TeX) to the top-left origin (used
by Typst). To match Typst’s style, we insert this matrix at the

beginning of every text object and flip the Y coordinates in
the Tm operators accordingly.

5.3.3 Demonstration of the Rewrite Process

Based on the observations above, we develop a 300-line
Python script that rewrites the content streams of a TeX-
generated PDF file to match Typst’s style while maintain-
ing a visually near-identical output, available at https:
//github.com/zhtluo/pdf-ob. An example
of rewriting a TeX-generated content stream to a Typst-style
content stream is shown in Figure 12.

We observe that the content stream output closely matches
Typst’s style found in Figure 1 1, demonstrating the feasibility
of our approach. Nevertheless, we do notice a few limitations
in our current implementation.

1. Our current script only handles text-object-related con-
tent streams, and does not account for the full quirks of
either TeX or Typst engines.

2. Our current script does not account for the font map-
ping differences between TeX and Typst. A more ro-
bust script would also rewrite the font resource objects
to match Typst’s style.

3. Our current script replaces all spacing in TeX with space
characters in Typst, which may lead to minor visual dif-
ferences in certain cases.

We argue that most of these limitations can be addressed
with more engineering effort, and do not affect the core idea.
Thus, it remains a fact that TeX-generated PDF files can
be transformed to be indistinguishable from Typst-generated
PDF files.

6 Related Work

PDF Obfuscation and Related Attacks. PDF content mask-
ing attacks exploit the mismatch between a document’s visual
appearance and what automated systems extract and index.
Markwood et al. [21] introduce PDF Mirage, showing that

https://github.com/zhtluo/pdf-ob
https://github.com/zhtluo/pdf-ob

Catalog (13 0 obj)
L Pages (5 0 obj)

L— page (2 0 obj)
Contents (3 @ obj)
L— "BT /F31 9.96264 Tf 1 0 0 1 140.944
656.037 Tm
[<00350049004A0054>—333<004A0054>—333<J
0042>—333<0055004600540055>—333<005100J
420053004200480053004200510049000F>]1TJ
100 1 303.509 96.112 Tm [<0012>]T]
ET"

Resources
L— Font /F31 (4 0 obj,
o /CNSUIX+NewCM10-Book)

rr s rcCe

Trailer
L— Info (14 0 obj)

Catalog (18 0 obj)

L— pages (9 0 obj)

L— page (2 0 obj)

Contents (10 0 obj)

L "1 00 -10 841.8898 cm /d65gray cs
@ scn /F@ 10 Tf BT 1 0 0 -1 126 132.83
Tm [(\000\001\000\002\000\003\000\004\ |
000\005\000\003\000\004\000\005\000\00 |
6\000\005\000\007\000\b\000\004\000\00 ,
7\000\005\000\t\000\006\000\n\000\006\ |
000\013\000\n\000\006\000\t\000\002\00
O\f)] TJ ET"

Resources

L— Font /F0 (4 0 obj,

o /CMINVQ+NewCM10-Regular-Identity-H)

[_f rrcecs

Trailer
L— 1Info (16 0@ obj)

Figure 11: Comparison of the PDF structures generated by TeX (left) and Typst (right) for the same simple document. We use
the same font (New Computer Modern) in both cases to isolate structural differences.

BT

/F31 9.96264 Tf

1001 140.944 656.037 Tm [<00350049004A0054>—333<00J
o 4A0054>-333<0042>-333<0055004600540055>-333<00510
-~ 0420053004200480053004200510049000F>]TJ

100 1 303.509 96.112 Tm [<0012>]TJ

ET

100 -10 841.8898 cm

/d65gray cs

0 scn

/F31 9.96264 Tf

BT

100 -1 140.94 185.85 Tm [(\000\065\000\111\000\112\

]
000\124\000\001\000\112\000\124\000\001\000\102\0 |
00\001\000\125\000\106\000\124\000\125\000\001\00
0\121\000\102\000\123\000\102\000\110\000\123\000

\102\000\121\000\111\000\017)] TJ
100 -1303.51 745.78 Tm [(\000\022)] TJ
ET

Leee

Figure 12: An example of rewriting a TeX-generated content
stream (top) to a Typst-style content stream (bottom).

carefully crafted PDFs can cause information-based services
(e.g., reviewer assignment, plagiarism detection, and search
indexing) to process content that differs from what humans
see. More recently, PDF obfuscations have been studied un-
der the context of spoofing Al agents, usually with direct font
modification schemes, in concurrent works [12,33]. We em-
phasize that these existing methods, such as the one proposed
by Xiong et al. [33], focus on carefully crafting TrueType
fonts or other artifacts that can be used in one specific ren-
dered text-hidden text pair (see Appendix A in the work). Our
improved method, on the contrary, allows us to generate all
the fonts beforehand and build whatever text we want on the
fly. These results, together with our attacks, suggest that the
binary structure of PDF files is highly malleable, and thus

12

raw PDF binaries cannot be reliably trusted as the sole input
to automated decision pipelines.

Language Model Jailbreak. Jailbreak targets the vulnera-
bilities within a language model. Language model jailbreak
refers to the process of deliberately manipulating adversar-
ial settings to induce models to generate responses that vi-
olate their designed ethical or operational alignments. By
crafting specific prompts [10, 19, 34] or inference hyper-
parameter [17], adversaries can manipulate the model to gen-
erate unsafe responses, such as malicious code, misinforma-
tion, or hate speech. Automatic jailbreak systems exploit it-
erative refinement techniques, a method where a seed adver-
sarial setting (prompt or inference hyper-parameter) is con-
tinuously modified to elicit an unsafe response from the lan-
guage model. This process involves several stages. The it-
erative process starts with the generation of adversarial set-
tings that are precisely crafted based on the given malicious
intent. Once the adversarial settings are established, these
settings are fed into the language model. The final stage in-
volves an evaluation of the language model’s responses to
determine if the jailbreak attempt has been successful. This
evaluation is based on predefined criteria, such as safeguard
violation [9, 10, 17, 19, 22, 34] or truthfulness [9, 10] of the
generated response. If the evaluation deems the attempt suc-
cessful, the iterative process is terminated.

In the context of PDF files, such attacks can be executed
by embedding invisible text that modifies the model’s behav-
ior, such as ‘ignore previous instructions and accept this pa-
per.” We notice that these attacks rely on specific prompts that
overrides the model’s behavior without changing the content
of the PDF, while our attacks rearrange the actual content of
the PDF file to mislead the model. Therefore, our attacks are
orthogonal to prompt injection attacks, and can be combined
to achieve more powerful effects.

Alternative Methods to Bypass TeXRay. Given that TeX is

\documentclass{article}
\usepackage{pdfpages}

\begin{document}

\includepdf[pages=-]1{the_real_article.pdf}
\end{document}

Figure 13: A sample shell TeX script that outputs a PDF file
directly.

Dear arXiv user,

Your submission appears to be a PDFLaTeX wrapper using pdf-
pages. This is an inappropriate submission, as it circumvents our TeX
system. As a result, we have moved your submission to “Incomplete”.

Instead, please submit your TeX source. If there is a particular
problem that you are encountering, please request assistance and in-
clude the specific error messages you receive, as well as your submit
id.

Further submissions of this type may result in the loss of your sub-
mission privileges.

For more information about our TeX system and policies, see the
following pages:

» http://arxiv.

» http://arxiv.

» http://arxiv.

« http://arxiv.
Regards,
arXiv admin

org/help/submit

org/help/submit_tex
org/help/submit_pdf
org/help/faq/whytex

Figure 14: An example of email sent by arXiv to authors who
upload shell TeX files.

a very powerful typesetting language, as early as 2014, peo-
ple have discovered that they can set up a shell TeX project
that contains a single PDF file to be outputted directly, es-
sentially bypassing the TeXRay checker altogether [13]. A
sample shell TeX script is given in Figure 13.

To remedy the issue, arXiv appears to manually flag such
submissions, and sends emails to require authors to submit
the original TeX source files. One such email can be found
online [29]. We include a copy of the email in Figure 14.

We consider it a policy debate what kind of TeX source
files are appropriate to upload. Given that this attack vector
has little to do with uploading PDF files directly, we do not
discuss it to details in this paper.

7 Conclusion

This paper demonstrates that parsing PDF page descrip-
tion language for semantic understanding is fundamen-
tally brittle. Because the PDF format was designed to de-
scribe visual appearance rather than logical structure, any
system that attempts to recover meaning by interpreting con-
tent streams, metadata, or font encodings inherits a large
and underconstrained attack surface. Our results show that
this mismatch can be exploited in practice to produce PDFs

13

whose parsed content diverges arbitrarily from what a human
observer would see.

We substantiate this claim through two classes of real-
world vulnerabilities. First, we show that several widely de-
ployed multimodal large language models extract text from
PDFs by directly interpreting content streams and font en-
codings, making them vulnerable to glyph remapping and
glyph positioning attacks. These attacks allow an adversary
to control the extracted text without altering the rendered ap-
pearance. Second, we demonstrate that arXiv’s TeX detec-
tion mechanism relies on heuristic signals in metadata and
embedded font names, which can be bypassed either at com-
pilation time or through post-processing, and more broadly
that PDFs produced by different typesetting systems are not
intrinsically distinguishable at the file level.

Our findings suggest a clear design lesson. Any system that
seeks to interpret the contents of a PDF in a way that is consis-
tent with human perception must treat visual rendering as the
ground truth. Approaches that render the document and then
apply OCR or vision-based models are significantly more ro-
bust against the attacks we present, precisely because they
operate on the same representation that a human reader sees.
While such approaches incur additional computational cost,
they avoid the fundamental ambiguity of recovering seman-
tics from a format that was never intended to encode them.

More broadly, this work highlights the risks of repurpos-
ing legacy document formats as semantic inputs to modern
automated systems. As PDFs are increasingly consumed
by LLMs, repositories, and automated moderation pipelines,
assumptions about their structure and provenance become
security-critical. We hope this work encourages system de-
signers to re-evaluate how PDFs are interpreted in adversarial
settings, and to favor architectures that align machine inter-
pretation with human perception by construction.

A Ethical Considerations

Stakeholder Analysis. Our work involves multiple stake-
holder groups affected by the interpretation and enforcement
of PDF documents.

1. Document consumers are end users who rely on sys-
tems such as large language models, document analy-
sis tools, and accessibility software to accurately inter-
pret the content of PDF files. These users depend on
the assumption that the extracted or summarized content
faithfully reflects what is visually rendered to a human
reader.

2. Platforms and service providers include organizations
that ingest and process PDFs at scale, such as multi-
modal language model providers, enterprise document
pipelines, and indexing services. During both research
and deployment, these platforms are exposed to integrity
risks when adversarial PDFs cause discrepancies be-

http://arxiv.org/help/submit
http://arxiv.org/help/submit_tex
http://arxiv.org/help/submit_pdf
http://arxiv.org/help/faq/whytex

tween rendered content and parsed representations.

3. Repositories and integrity gatekeepers include aca-
demic repositories and moderation systems that en-
force submission policies and provenance requirements.
These entities rely on automated checks to maintain in-
tegrity and compliance, and may be impacted when such
checks can be evaded.

4. Researchers and practitioners who depend on robust
assumptions about document interpretation to build re-
liable systems. This group is both a beneficiary of im-
proved understanding of failure modes and a stakeholder
in the responsible dissemination of techniques that may
have dual-use implications.

Positive Impacts. The publication of this work yields several
positive impacts across stakeholder groups by clarifying fun-
damental limitations in current PDF interpretation practices
and providing guidance for more robust system design.

1. For document consumers, our findings expose integrity
risks arising from discrepancies between rendered con-
tent and parsed representations, helping prevent scenar-
ios in which users are unknowingly misled by automated
document summaries or analysis.

2. For platforms and service providers, this work provides
concrete evidence that commonly deployed PDF text-
extraction pipelines are insufficient under adversarial
conditions, motivating the adoption of render-first or
render-consistency-based ingestion strategies for high-
stakes applications.

3. For repositories and integrity gatekeepers, our analysis
highlights the fragility of metadata-based provenance
checks, informing the design of stronger, workflow-
aware enforcement mechanisms that better align auto-
mated signals with human review processes.

4. For researchers and practitioners, this work contributes
a systematic characterization of an underexplored attack
surface in document processing, enabling the develop-
ment, evaluation, and benchmarking of more reliable
document-understanding systems grounded in human-
visible semantics.

Negative Impacts. Despite its benefits, this work introduces
potential negative impacts due to the dual-use nature of the
demonstrated techniques.

1. For document consumers, adversarial PDFs that exploit
discrepancies between rendered content and parsed rep-
resentations may be misused to induce misinformation,
fraud, or incorrect automated interpretations, particu-
larly when users rely on language models or document
analysis tools without independently verifying the ren-
dered document.

2. For platforms and service providers, the techniques de-
scribed in this paper could be leveraged to manipulate
downstream workflows that depend on PDF text extrac-
tion, including indexing, compliance checks, and auto-
mated decision-making pipelines, thereby undermining

14

system integrity.

3. For repositories and integrity gatekeepers, our demon-
stration of evasion against metadata-based provenance
detection may increase the difficulty of enforcing auto-
mated submission policies and raise the burden on hu-
man moderation processes.

4. For society at large, the broader risk lies in the erosion
of trust in automated document understanding systems
if such vulnerabilities are exploited at scale, especially
in contexts where documents are treated as authoritative
sources.

Mitigation Strategies. To mitigate the risks associated with
the dual-use nature of our findings, we adopt a set of re-
sponsible research practices and propose concrete defensive
guidance. Each measure is designed to protect specific stake-
holder groups.

1. Responsible Disclosure to Protect Platforms and
Users. We notified all relevant platform providers and
repository operators of the identified vulnerabilities at
least 90 days prior to publication. This disclosure win-
dow allowed affected parties to investigate, acknowl-
edge, and, where applicable, deploy mitigations before
the public release of our results, thereby reducing the
risk of widespread misuse against document consumers
and service providers.

2. Benign Experimental Design to Protect Document
Consumers. All adversarial PDF documents used in
our evaluation contain safe and non-deceptive content.
We avoid the use of phishing material, fraudulent in-
structions, or sensitive personal data. This constraint
ensures that our experiments demonstrate structural vul-
nerabilities in document interpretation pipelines without
creating artifacts that could be directly repurposed for
harmful real-world exploitation.

3. Render-First Interpretation via OCR to Improve
System Integrity. Based on our findings, we recom-
mend that platforms adopt render-first document inges-
tion pipelines that rely on visual rendering followed by
optical character recognition. By grounding interpreta-
tion in the rendered appearance of a PDF, such systems
align extracted semantics with what a human reader ob-
serves, substantially reducing the attack surface exposed
by adversarial manipulation of page-description con-
structs. While more computationally expensive, this ap-
proach provides a principled defense against the classes
of obfuscation demonstrated in this work.

Justification for Research. This research addresses a fun-
damental and increasingly consequential problem in modern
document-processing systems: the assumption that parsing
the PDF page description reliably reflects the content vis-
ible to human readers. As PDF documents are routinely
ingested by language models, indexing services, and insti-
tutional workflows, silent discrepancies between rendered
content and parsed representations pose systemic integrity

risks. Exposing these failure modes is necessary to prevent
the continued deployment of brittle interpretation pipelines
in high-stakes settings. We conducted this work with re-
sponsible disclosure and benign experimentation, and we
provide clear guidance toward safer render-first alternatives
rather than merely demonstrating exploitation. By identi-
fying a structural mismatch between human-visible seman-
tics and machine-extracted representations, this work enables
the development of more robust and trustworthy document-
understanding systems, thereby reducing long-term risks rel-
ative to the status quo.

B Open Science

We have included the necessary proof-of-concept PDFs and
TeXRay scripts at https://github.com/zhtluo/
pdf-ob.

1. The file PoC-1.pdf is a proof of concept PDF that ex-
ploits font data manipulation to mislead PDF text ex-
traction.

2. The file PoC-2.pdf is a proof of concept PDF that ex-
ploits glyph position manipulation to mislead PDF text
extraction.

3. The file patch.py is the Python script that modifies
the Metadata of a TeX-generated PDF file to bypass
TeXRay’s detection.

4. The file transform.py is the Python script that rewrites
the content streams of a TeX-generated PDF file to
match Typst’s style.

References

[1] Document management — portable document format
— part 2: PDF 2.0. Standard ISO 32000-2:2020, In-
ternational Organization for Standardization, Geneva,
Switzerland, 2020. Second edition.

[2] Computer modern — the LaTeX font catalogue. http
s://tug.org/FontCatalogue/computer

modern/, 2021. Last updated on 2021-01-19.

Poppler: A PDF rendering library. https://popp
ler.freedesktop.org/, 2025. Version 25.08.0.
Accessed 2025-08-25.

(3]

Adobe Inc. Adobe acrobat ai assistant. https://ww
w.adobe.com/acrobat/generative-ai-p
df.html, 2025. Accessed: 2025.

(4]

Anthropic. Claude. https://www.anthropic.
com/claude, 2025. Accessed: 2025.

(5]

arXiv. Accessibility research report. https://in
fo.arxiv.org/about/accessibility_r
esearch_report.html, 2022. Accessed: 2025-
07-17.

(6]

15

(7]

(8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

arXiv. About arXiv. https://info.arxiv.org
/about/index.html, 2025. Accessed: 2025-07-
17.

arXiv. Why TeX? https://info.arxiv.org/h
elp/faq/whytex.html, 2025. Accessed: 2025-
07-17.

Hongyu Cai, Arjun Arunasalam, Leo Y. Lin, Antonio
Bianchi, and Z. Berkay Celik. Rethinking How to Eval-
uate Language Model Jailbreak, 2024.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, and George J. et al. Pappas. Jail-
breaking Black Box Large Language Models in Twenty
Queries, 2023.

Colin B. Clement, Matthew Bierbaum, Kevin P. O’Ke-
effe, and Alexander A. Alemi. On the use of arxiv as a
dataset, 2019.

Aldan Creo. Complete evasion, zero modification: Pdf
attacks on ai text detection, 2025.

David Ketcheson. How to upload LaTeX-generated
PDF paper to arXiv without LaTeX sources. TeX Stack-
Exchange Q&A. URL: https://tex.stacke
xchange.com/questions/186068/how-t
o-upload-latex-generated-pdf-paper
-to-arxiv-without-latex-sources, ac-
cessed 2025-07-20.

FontForge. FontForge Open Source Font Editor. http
s://fontforge.org/en-US/, 2021. Accessed:
2026-01-31.

Google. Document understanding. https://ai.g
oogle.dev/gemini-api/docs/document
-processing, 2025. Accessed: 2025.

Google. Gemini. https://gemini.google.co
m, 2025. Accessed: 2025.

Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai
Li, and Danqgi Chen. Catastrophic Jailbreak of Open-
source LLMs via Exploiting Generation, 2023.

Bogustaw Jackowski and Janusz M. Nowacki. Latin
modern family of fonts (Im). https://www.ctan
.org/tex-archive/fonts/1m/, March 2021.
Version 2.005; GUST Font License (GFL).

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei
Xiao. AutoDAN: Generating Stealthy Jailbreak
Prompts on Aligned Large Language Models. 2023.

Zhongtang Luo. Circumvent arxiv latex detection. ht
tps://zhtluo.com/misc/circumvent-a
rxiv-latex-detection.html, 2023. Ac-
cessed: 2025-07-18.

https://github.com/zhtluo/pdf-ob
https://github.com/zhtluo/pdf-ob
https://tug.org/FontCatalogue/computermodern/
https://tug.org/FontCatalogue/computermodern/
https://tug.org/FontCatalogue/computermodern/
https://poppler.freedesktop.org/
https://poppler.freedesktop.org/
https://www.adobe.com/acrobat/generative-ai-pdf.html
https://www.adobe.com/acrobat/generative-ai-pdf.html
https://www.adobe.com/acrobat/generative-ai-pdf.html
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://info.arxiv.org/about/accessibility_research_report.html
https://info.arxiv.org/about/accessibility_research_report.html
https://info.arxiv.org/about/accessibility_research_report.html
https://info.arxiv.org/about/index.html
https://info.arxiv.org/about/index.html
https://info.arxiv.org/help/faq/whytex.html
https://info.arxiv.org/help/faq/whytex.html
https://tex.stackexchange.com/questions/186068/how-to-upload-latex-generated-pdf-paper-to-arxiv-without-latex-sources
https://tex.stackexchange.com/questions/186068/how-to-upload-latex-generated-pdf-paper-to-arxiv-without-latex-sources
https://tex.stackexchange.com/questions/186068/how-to-upload-latex-generated-pdf-paper-to-arxiv-without-latex-sources
https://tex.stackexchange.com/questions/186068/how-to-upload-latex-generated-pdf-paper-to-arxiv-without-latex-sources
https://fontforge.org/en-US/
https://fontforge.org/en-US/
https://ai.google.dev/gemini-api/docs/document-processing
https://ai.google.dev/gemini-api/docs/document-processing
https://ai.google.dev/gemini-api/docs/document-processing
https://gemini.google.com
https://gemini.google.com
https://www.ctan.org/tex-archive/fonts/lm/
https://www.ctan.org/tex-archive/fonts/lm/
https://zhtluo.com/misc/circumvent-arxiv-latex-detection.html
https://zhtluo.com/misc/circumvent-arxiv-latex-detection.html
https://zhtluo.com/misc/circumvent-arxiv-latex-detection.html

[21] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. Pdf
mirage: Content masking attack against information-
based online services. In 26th USENIX Security Sym-
posium (USENIX Security 17), pages 833-847, 2017.

[22] Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou,
and Zifan et al. Wang. HarmBench: A Standardized
Evaluation Framework for Automated Red Teaming and

Robust Refusal, 2024.

[23] Microsoft. Microsoft copilot. https://copilot.

microsoft.com, 2025. Accessed: 2025.

[24] OpenAl. Chatgpt. https://chat.openai.com,

2025. Accessed: 2025.

[25] Overheard on QuantPh (@QuantPhComments). Over-
heard on QuantPh [X (Twitter) account]. https:
//x.com/quantphcomments, 2025. Accessed
2025-07-18.

[26] Grisha Perelman. The entropy formula for the ricci flow
and its geometric applications, 2002.

[27] Jordi Pont-Tuset. arXiv LaTeX cleaner: safer and easier
open source research papers. https://opensour
ce.googleblog.com/2019/02/arxiv-1
atex-cleaner.html, February 2019. Accessed:
2025-07-18.

[28] SIGCSE TS 2026 Organizing Committee. SIGCSE TS
2026: Submission templates (papers track). https:
//sigcse2026.sigcse.org/track/sigc
se-ts-2026-Papersttsubmission-templ

ates, 2025. Accessed: 2025-07-18.

[29] Mingshen Sun. How to bypass arXiv LaTeX-generated
PDF detection in six lines. https://mssun.me/b
log/how-to-bypass-arxiv-latex-gener
ated-pdf-detection-in-six-lines.htm
1, December 2016. Updated: Sep 3, 2018; Accessed:
2025-07-20.

[30] Typst GmbH. Typst: Compose papers faster. https:

//typst.app/.2025. Accessed: 2025-07-18.

[31] Wikipedia contributors. List of preprint repositories.
https://en.wikipedia.org/wiki/List
_of_preprint_repositories, 2025. Last
edited 1 July 2025, retrieved 28 October 2025.

[32] xAlL Grok. https://x.ai, 2025. Accessed: 2025.

[33] Junjie Xiong, Changjia Zhu, Shuhang Lin, Chong
Zhang, Yongfeng Zhang, Yao Liu, and Lingyao Li. In-
visible prompts, visible threats: Malicious font injec-
tion in external resources for large language models,
2025.

16

[34] Andy Zou, Zifan Wang, J. Zico Kolter, and Matt
Fredrikson. Universal and Transferable Adversarial At-
tacks on Aligned Language Models, 2023.

https://copilot.microsoft.com
https://copilot.microsoft.com
https://chat.openai.com
https://x.com/quantphcomments
https://x.com/quantphcomments
https://opensource.googleblog.com/2019/02/arxiv-latex-cleaner.html
https://opensource.googleblog.com/2019/02/arxiv-latex-cleaner.html
https://opensource.googleblog.com/2019/02/arxiv-latex-cleaner.html
https://sigcse2026.sigcse.org/track/sigcse-ts-2026-Papers#submission-templates
https://sigcse2026.sigcse.org/track/sigcse-ts-2026-Papers#submission-templates
https://sigcse2026.sigcse.org/track/sigcse-ts-2026-Papers#submission-templates
https://sigcse2026.sigcse.org/track/sigcse-ts-2026-Papers#submission-templates
https://mssun.me/blog/how-to-bypass-arxiv-latex-generated-pdf-detection-in-six-lines.html
https://mssun.me/blog/how-to-bypass-arxiv-latex-generated-pdf-detection-in-six-lines.html
https://mssun.me/blog/how-to-bypass-arxiv-latex-generated-pdf-detection-in-six-lines.html
https://mssun.me/blog/how-to-bypass-arxiv-latex-generated-pdf-detection-in-six-lines.html
https://typst.app/
https://typst.app/
https://en.wikipedia.org/wiki/List_of_preprint_repositories
https://en.wikipedia.org/wiki/List_of_preprint_repositories
https://x.ai

	Introduction
	Technical Overview
	Preliminaries
	Creating Obfuscated PDFs for LLMs
	Font Data Manipulation
	Glyph Position Manipulation
	Evaluation

	Editing PDF Metadata for arXiv
	Analysis of TeXRay Mechanism
	Metadata Analysis
	Font Analysis

	Circumventing TeXRay
	LaTeX Macro-based Bypass
	Post-processing-based Bypass

	TeX Translation
	Comparison of TeX and Typst PDF
	Rewriting Content Streams
	Demonstration of the Rewrite Process

	Related Work
	Conclusion
	Ethical Considerations
	Open Science

